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Abstract: This paper inroduces a variaional ormulaion o naural selecion, paying special aen-

ion o he naure o ‘hings’ and he way ha dieren ‘kinds’ o ‘hings’ are individuaed rom—

and inuence—each oher. We use he Bayesian mechanics o paricular pariions o undersand

how slow phylogeneic processes consrain—and are consrained by—as, phenoypic processes.

The main resul is a ormulaion o adapive ness as a pah inegral o phenoypic ness. Pahs o

leas acion, a he phenoypic and phylogeneic scales, can hen be read as inerence and learning

processes, respecively. In his view, a phenoype acively iners he sae o is econiche under a

generaive model, whose parameers are learned via naural (Bayesian model) selecion. The ensu-

ing variaional synhesis eaures some unexpeced aspecs. Perhaps he mos noable is ha i is no

possible o describe or model a populaion o conspecics per se. Raher, i is necessary o consider

populaions o disinc naural kinds ha inuence each oher. This paper is limied o a descripion

o he mahemaical apparaus and accompanying ideas. Subsequen work will use hese mehods

or simulaions and numerical analyses—and ideniy poins o conac wih relaed mahemaical

ormulaions o evoluion.
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1. Introduction

This paper is an aemp o show ha some undamens o heoreical evoluion—

and (neuro)biology—emerge when applying he ree energy principle o dynamical sys-

ems wih separaion o emporal scales. I oers a echnical and generic reamen wih

minimal assumpions or commimens o specic biological processes. As such, i does

no borrow rom esablished consrucs in evoluionary heory; raher, i ries o showhow

some o hese consrucs are emergen properies, when seen hrough he lens o he ree

energy principle. In subsequen work, we will use he ensuing variaional synhesis o

consider esablished—and curren—evoluionary heories. Our aim in his paper is o in-

roduce a ormalism ha may be useul or addressing specic quesions—abou evolu-

ionary or developmenal dynamics—using analyic or numerical recipes ha have

proven useul when applying he ree energy principle in oher elds.
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A key phylogeneic process—underlying he developmen and diversicaion o spe-

cies in evoluionary ime—is known as naural selecion, regarded by some as he cenral

organizing principle o biology. While Darwin conceived o naural selecion in erms o

herediy, variaion, and selecion [1,2], he only deailed selecion, as he mechanisms o

herediy and variaion would no be undersood or some ime [3,4]. The inegraion o

Mendelian geneics wih naural selecion in he early wenieh cenury was ollowed by

an inegraion wih molecular geneics [5] in he mid-cenury o orm Neo-Darwinism, or

he modern synhesis. The modern synhesis, along wih he selsh gene hypohesis—pu

orh in he 1970s [6]—provide a largely gene-cenric view o Darwinian evoluion ha

dominaes he curren perspecive.

This gene-cenric view o evoluionary biology has remained largely disconneced

rom phenoypic processes ha impac organisms in developmenal ime [7,8]. Lewonin

characerised his disconnec—beween geneic and phenoypic undersanding—as he

major challenge acing he eld [9]. While some progress has been made in he ollowing

y years, biologiss coninue o highligh he gaps remaining or modelling biology as a

single inegraed process over muliple scales [10–13]. By ‘gene-cenric’, we reer no jus

o heories o sequence evoluion [14], bu also o he cenral role genes (or summary sa-

isics o genes) play eiher explicily or implicily in accouns o phenoypic evoluion.

For insance, he Price Equaion [15] and he closely relaed replicaor equaion [16] o

evoluionary game heory express he relaionship beween he changes in (he average

o) some phenoypic rai over ime. This gene-cenric view relies upon a mapping be-

ween ha rai and he geneic maerial passed rom generaion o generaion bu ocuses

upon he phenoypic eecs o genes as opposed o he alleles hemselves. Similarly, adap-

ive dynamic approaches [17] ypically ocus upon ecological ineracions a a phenoypic

level. The modern ocus upon phenoypic rais reecs he imporance o he ineracion

beween a phenoype and is environmen in deermining ness. However, i is imporan

o noe ha such perspecives do no conic wih he cenral role o geneic inheriance,

and implicily score he ness o genoypes in erms o he phenoypes hey imply.

An organism inheris a se o insrucions or growh and developmen (i.e., an ex-

ended genoype) ha is, in essence, a predicion abou he niche environmen (including

emperaure, humidiy, chemical composiion, available resources, saisical paerns,

ec.). Inerrogaing he phrase ‘survival o he es’ leads o he undersanding o ‘es’

as organisms ha are he bes ‘’ o heir niche environmen [18]. For example, a bace-

rium rom hermal ho springs will ail o hrive in a cool pond because is genoype does

no accuraely predic he niche environmen. Thereore, ‘ness’ is relaive o he niche,

where slow phylogeneic processes have seleced or an exended genoype ha enhances

he growh and prolieraion o organisms in he environmen where he corresponding

species expecs o nd isel.

An organism can also ‘’ isel o he niche hrough adapaion (i.e., acion, learning,

and developmen) during is lieime. For example, a bacerium ha normally subsiss on

sulphur reducion—bu can also survive hrough reducing oxygen—will oulas is sul-

phur-dependen compeiors in an environmen ha is devoid o sulphur. Such an organ-

ism can adap o is environmen hrough learning and opimising or oxygen reducion,

hereby increasing is  o he niche and, implicily, is capaciy o reproduce in a high-

oxygen environmen. In his way, he phenoypic processes can enhance he  o organ-

isms o heir environmen in developmenal ime, and hrough reproducion, phenoypic

processes can lead o he enhancemen o  in evoluionary ime (i.e., across generaions).

As he (exended) genoype o organisms produces phenoypes, phylogeneic processes

over evoluionary ime also impac phenoypic (onogeneic) processes in developmenal

ime.

Here, we oer a synhesis o evoluion and developmen hrough a mahemaical

ramework ha unies slow, muli-generaional (phylogeneic) processes wih single-lie-

ime, phenoypic (developmenal and behavioural) processes using he same principles,

as hey apply o each emporal scale. The ensuing variaional accoun o evoluion ocuses
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on he coupling beween phylogeneic processes a evoluionary imescales and onoge-

neic processes over phenoypic lieimes. In principle, his absrac reamen is agnosic

o specic mechanisms, and could be applied o biological as well as non-biological sys-

ems provided heir ‘ness’ depends upon evens during a lieime, andwhere his ness

inuences dynamics over a generaional scale. This muliscale accoun oregrounds he

circular causaliy ha arises rom he implici separaion o imescales [19].

In brie, we consider slow phylogeneic processes (natural selection) as urnishing op-

down consrains (i.e., op-down causaion) on as phenoypic processes (action selection).

In urn, he acive exchange o he phenoype wih is environmen provides evidence ha

is assimilaed by naural selecion (i.e., boom-up causaion). This onological accoun is

licensed by describing boh phylogeneic and phenoypic processes as selecing (ex-

ended) genoypes and (exended) phenoypes [7,20] wih he greaes ness, where -

ness is quanied wih (ree energy) uncionals o probabiliy densiy uncions (a unc-

ional is a uncion o a uncion).

This ormulaion means ha naural selecion and acion selecion can be described

as updaing probabilisic belies a phylogeneic and phenoypic scales, respecively:

namely, learning and inerence [21–23]. This separaion o scales aords an inerpreaion

o natural selection as Bayesian model selection [24–26], while action selection becomes planning

as inerence [27–30]—boh (appearing o) opimise he same ness uncional: namely,

Bayesian model evidence or marginal likelihood. A narraive version o his accoun can

be old rom he poin o view o he genoype (rom he boom up) or he phenoype

(rom he op down):

From the perspective o the genotype, we can consider evoluion as belie-updaing

over generaions, where he belie in quesion corresponds o a probabiliy densiy over

exended genoypes (henceorh, genoype). This belie-based model o allelic change is

analogous o reamens o evoluion in erms o changes in allele requencies rom gener-

aion o generaion [15]. This belie updaing can be described by he probabiliy o a gen-

oype appearing in subsequen generaions, in a way ha depends lawully on he mar-

ginal likelihood o exended phenoypes (henceorh, phenoype) in he curren genera-

ion. The basic idea is that the genotype parameterises or encodes a generative model, which the

phenotype uses to iner and act on its environment. On his view, evoluion can be regarded

as esing hypoheses—in he orm o generaive models—ha his kind o phenoype can

persis in his environmen. These hypoheses are esed by exposing he phenoype o he

environmen and are rejeced i he phenoype ‘srays rom he pah’ o a persisen phe-

noype. In his way, he evoluionary process selecs models or hypoheses abou persis-

en phenoypes or which i has he greaes evidence. In shor, naural selecion is jus

Bayesian model selecion [25,26,31,32].

From the perspective o a phenotype, each conspecic is equipped wih a generaive

model and iniial condiions ha underwrie is epigeneic, developmenal and ehologi-

cal rajecories. The saes o he phenoype race ou a pah hrough sae-space over is

lieime. These phenoypic saes encode or parameerise belies abou environmenal

saes—and he way he phenoype acs. This parameerizaion leads o acive inerence

and learning, in which he phenoype ries o make sense o is world and—hrough a

process o belie updaing—o realise he kind o creaure i hinks i is. (We use he erm

‘hinks’ in a liberal sense here and do nomean o imply ha all living eniies have explici

exisenial houghs.) More precisely, whawe mean is ha hese eniies behave as i hey

hold a se o belies abou he sor o eniy hey are (e.g., he mea-Bayesian sance as

considered in [33]). In virue o is geneic endowmen, i hinks i is a persisen pheno-

ype. I endowed wih a good generaive model o is environmen [34], iwill persis and

supply evidence o is ‘’ o he environmen (i.e., ‘ness’); namely, evidence (i.e., mar-

ginal likelihood) ha has been accumulaed by he slow evoluionary process.

Wha ollows is a ormal version o his narraive ha calls upon some sandard re-

suls rom saisical physics. The resuling synhesis is boh dense and delicae, because

i ries o accoun or coupling beween a phenoype and is econiche—and he coupling
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beween phenoypic and phylogeneic processes—using he same principles. Specically,

we describe a variaional synhesis ha calls on he pah inegral ormulaion o sochasic

dynamics, he apparaus o he renormalisaion group, and he Poincaré recurrence heo-

rem. The ensuing synhesis considers naural selecion and acion selecion as emergen

properies o wo random dynamical processes unolding a slow (phylogeneic) and as

(phenoypic) imescales. The key aspec o his synhesis is ha boh processes have an

aracing se (a.k.a., pullback aracor) or seady-sae soluion [35]. These soluions cor-

respond o an evolutionary stable state [36] and a nonequilibrium steady-state density [37] over

phylogeneic and phenoypic saes, respecively. By describing hese seady saes in

erms o a phylogeneically encoded generaive model—namely, a join densiy over he

pahs o he phenoype and is environmen—one can recover an onological descripion

o how he wo processes inorm, and are inormed by, each oher.

Some o he analysis presened in his paper ollows ha in [21–23], which also ap-

peals o he noion o a renormalisaion group. These reamens are based upon he emer-

gence o separable imescales and he inerpreaion o he dynamics a each scale in anal-

ogy wih inerence and learning processes. The key dierences are as ollows. The renor-

malisaion in [21] depends upon a reducion in he number o degrees o reedom wih

learning, whereas our ormulaion depends upon a pariioning operaion as par o he

renormalisaion. The dierence in imescales beween variables in [21] emerges rom he

srucure o he neural nework used, whereas i is a direc consequence o he reducion

operaor implici in our choice o renormalisaion. Finally, we exend our analysis o sen-

ien phenoypes, whose dynamics can be inerpreed explicily in erms o Bayesian be-

lie-updaing. We conclude wih a numerical sudy, illusraing he basic ideas wih syn-

apic selecion in he brain.

2. A Variational Formulation

We assume ha evoluion can be described wih wo random dynamical sysems,

describing phylogeneic (evoluionary) and phenoypic (paricular) processes, respec-

ively. The idea is o couple hese sysems using he apparaus o he renormalisaion

group [38–40] o map rom as phenoypic dynamics o slow phylogeneic dynamics in

evoluionary ime.

This mapping ress upon a dimension reducion and coarse graining or grouping

operaor (RG or Renormalisaion Group) ha maps he pah o a phenoype  o rele-

van variables a he evoluionary scale  =R . On his view, boom-up causaion is

simply he applicaion o a reducion operaor, R , o selec variables ha change very

slowly. Top-down causaion enails a specicaion o as phenoypic rajecories in erms

o slow genoypic variaions, which are grouped ino populaions, G , according o he

inuences hey exer on each oher. The implici separaion ino as and slow variables

can be read as an adiabaic approximaion [41] or—in he sense o synergeics—ino as

(dynamically sable) and slow (dynamically unsable) modes, respecively [42]. This sep-

araion can also be seen in erms o vecorial geomeric ormulaions [43]. Please see [21],

who deal careully wih he separaion o ime scales by analogy wih emporal dilaion

in physics. Inuiively, his analogy ress upon he idea ha ime can be rescaled, depend-

ing upon wheher we ake he perspecive o hings hamove quickly or slowly.

The nal move is o express he dynamics—a as and slow levels—in erms o unc-

ionals ha have he same orm. These uncionals are uncions o probabiliy densiies

ha can be read as Bayesian belies. Expressing he dynamics in his way allows one o

inerpre phenoypic dynamics as acive inerence and learning, under a generaive model

ha depends on he exended genoype. In oher words, one can inerpre he phyloge-

neic sae as inerring saes o he environmen over evoluionary ime. Crucially, he

exended genoype accumulaes evidence or is phenoype, hereby evincing a orm o

Bayesian model selecion or srucure learning [25,44–48]. For an analogous hermody-

namic reamen, please see [22], who rene and exend he ree energy ormulaion o
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[49]. In he conex o learning dynamics, a hermodynamic ree energy was derived in

[50]—using he maximum enropy principle [51,52]—and laer applied o sudy phenom-

enological models o evoluion [22]. Please see [50,53,54] or urher discussion in erms o

neural neworks and inormaion heory.

2.1. Particular Partitions

There are many moving pars in his ormulaion because i ries o accoun or he

behaviour o ‘hings’ [55] and how his behaviour underwries he emergence o ‘kinds’

(e.g., individuals and populaions) a nesed (i.e., developmenal and evoluionary) ime-

scales.

We will use [ ( )]x t x o denoe he hisory or pah o a ime-varying sae. These

pahs are deermined by sae-dependen ow ( )xf x , wih parameers x x ha in-

clude iniial saes 0(0)x x x=  . These parameers denoe a (naural) kind.

Everyhing ha ollows ress upon a particular partition o saes. A paricular pari-

ion is considered necessary o alk abou ‘hings’, such as a ‘phenoype’ or ‘populaion’.

In brie, a paricular pariion enables he (inernal) saes o some ‘hing’ o be separaed

rom he (exernal) saes o every ‘hing’ else by (sensory and acive) blanke saes [56–

60]. In he absence o his pariion, here would be no way o disinguishing a phenoype

rom is exernal milieu—or a populaion rom he environmen. In his seup, exernal

saes can only inuence hemselves and sensory saes, while inernal saes can only in-

uence hemselves and acive saes. See Figure 1 or an inuence diagram represening

he coupling among inernal, exernal, and blanke saes:

States: ( , , , )x s a = . Saes comprise he external, sensory, active and internal

saes o a phenoype. Sensory and acive saes consiue blanket saes

( , )b s a= , while phenotypic saes comprise inernal and blanke saes,

( , ) ( , )b s  = = . The autonomous saes o a phenoype ( , )a = are no

inuenced by exernal saes:

i. External states respond o sensory and acive saes. These are he saes o a pheno-

ype’s exernal milieu: e.g., econiche, body, or exracellular space, depending upon

he scale o analysis.

ii. Sensory states respond o ucuaions in exernal and acive saes: e.g., chemo-re-

cepion, propriocepion, inercepion.

iii. Active states respond o sensory and inernal saes and mediae acion on he envi-

ronmen, eiher direcly or vicariously hrough sensory saes: e.g., acin lamens,

moor acion, auonomic reexes.

iv. Internal states respond o sensory and acive saes: e.g., ranscripion, inracellular

concenraions, synapic aciviy.
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Figure 1. Schemaic (i.e., inuence diagram) illusraing he sparse coupling among saes ha con-

siue a paricular pariion a wo scales.

The evoluion o hese sparsely coupled saes can be expressed as a Langevin or so-

chasic dierenial equaion: namely, a high dimensional, nonlinear, sae-dependen ow

plus independen random (Wiener) ucuaions,  , wih a variance o 2Γ:
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The ow per se can be expressed using he Helmholt–Hodge decomposiion [61] as ol-

lows:
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(2)

Noe ha our appeal o an equaion o his orm means we have implicily sipulaed ha

here is a seady-sae densiy or poenial uncion ha remains consan (or a leas

changes very slowly) over he imescale we are ineresed in. Equaion (2) expresses he

ow as a mixure o a dissipaive, gradien ow and a conservaive, solenoidal ow [62–

64]. The gradien ow  depends upon he ampliude o random ucuaions, while
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he solenoidal ow Q circulaes on he isoconours o he poenial uncion called

sel-inormation, ( ) ln ( )x p x = − , where ( )p x is called he nonequilibrium steady-state

density or NESS densiy [37,65–67].

The paricular pariion above ress on sparse coupling beween dynamic variables,

c.., [68,69], and evinces he noion o an ‘acion-percepion cycle’ beween exernal and

inernal saes [70]. The erms ‘exernal’ and ‘inernal’ oer useul inuiions, bu i is worh

being cauious abou overinerpreing hese labels in spaial erms. For insance, i migh

seem ha some ‘exernal’ variables such as ambien emperaure migh direcly inuence

‘inernal’ variables such as he emperaure wihin a cell. However, his inuiion would

no be an appropriae way o hinking abou his sysem’s pariion. Eiher we would have

o assume ha here is an inervening variable (e.g., he emperaure wihin he cell mem-

brane) or we would have o rea he inernal emperaure as a sensory variable, which

isel inuences inernal variables such as he raes o enzymaic reacions. There is now

an emerging lieraure asking abou he appropriae ways o hink o paricular pariions

in biology, including wha is inernal o a neuronal nework [71], or a spinal reex arc [72].

2.2. Ensemble Dynamics and Paths o Least Action

To describe dynamics a he phenoypic or phylogeneic scale, we rs need o re-

hearse some sandard resuls rom saisical physics ha urnish a probabilisic descrip-

ion o rajecories or pahs a any scale. This descripion calls on he sel-inormaion o

saes ( )x t , generalised saes ( , , )x x x= , and pahs, [ ( )]x x t= , where

( , , )x x x =D denoes generalised noion, and 2Γ is he covariance o generalised

random ucuaions:

1 1
0 2 2
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( ) | [ln | | ( ( )) ( ( )) ]

( ) ln (
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ln ( )

| ) ( )

x x x x f x x f x f
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x

p

t x

p x

== + −  − +

= − =

= −

−


Γ

Γ D D (3)

The rsmeasure, ( )x , is he sel-inormaion or surprisal o a sae, namely, he implau-

sibiliy o a sae being occupied. When he sae is an allele requency and evolves accord-

ing o Wrigh–Fisher dynamics, his is someimes reerred o as an ‘adapive landscape’

[73]. The second, ( )x , is he Lagrangian, which is he surprisal o a generalised sae,

namely, he insananeous pah associaed wih he moion rom an iniial sae. In gener-

alised coordinaes o moion, he sae, velociy, acceleraion, ec., are reaed as separae

(generalised) saes ha are coupled hrough he ow [74,75]. Finally, he surprisal o a

pah ( )x is called action, namely, he pah inegral o he Lagrangian.

Generalised saes aord a convenien way o expressing he pah o leas acion in

erms o he Lagrangian

( ) ( ) 0 ( ) ( ) ( )x x xx x x x x x x x x + − =  − = −  = −D D D (4)

The rs equaliy resembles a Lagrange equaion o he rs kind ha ensures he

generalised moion o saes is he sae o generalised moion. Alernaively, i can be read

as a gradien descen on he Lagrangian, in a moving rame o reerence (second equaliy).

When he Lagrangian is convex, soluions o his generalised gradien descen on he La-

grangian (hird equaliy) necessarily converge o he pah o leas acion. Denoing pahs

o leas acion wih boldace:
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( )
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Convergence is guaraneed by he quadraic orm (i.e., convexiy) o he Lagrangian,

which inheris rom Gaussian assumpions abou random ucuaions. This gradien de-

scen is someimes described as convergence o he pah o leas acion, in a rame o re-

erence hamoves wih he sae o generalised moion [76].

We can also express he condiional independencies implied by a paricular pariion

using he Lagrangian o generalised saes. Because here are no ows ha depend on boh

inernal and exernal saes, exernal and inernal pahs are independen, when condi-

ioned on blanke pahs:

2 2

00 0 ( , | , ) ( | , ) ( | , ) ( ) | , ,
f

s a s a s a s a x     
   
 

=  =  = +  ⊥
    (6)

In oher words, blanke pahs urnish a Markov blanke over inernal pahs. We will

use his resul laer o disambiguae he role o acive and sensory dynamics in senien

behaviour—i.e., acive inerence—o a phenoype. Firs, we have o esablish a ormalism

or ensembles or populaions o phenoypes. Here, we draw on he apparaus o he renor-

malisaion group.

2.3. Diferent Kinds o Things

To deal wih muliple ‘hings’ (e.g., paricles, phenoypes and populaions), we rs

inroduce a grouping operaor G ha pariions he saes a he i-h scale o analysis ino

N paricles on he basis o he sparse coupling implied by a paricular pariion. In oher

words, we group saes ino an ensemble o paricles, where each paricle has is own in-

ernal and blanke saes. Wih a sligh abuse o he se builder noaion:
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(7)

The grouping operaor means he exernal saes o a given paricle are he (blanke)

saes o remaining paricles ha inuence i. See [55] or a worked example and numerical

analysis. This grouping expresses he dynamics o each paricle in erms o is sensory

saes—ha depend upon he blanke saes o oher paricles—and auonomous saes—

ha only depend upon he saes o he paricle in quesion:
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(8)

A his poin, we pause o consider ha he saes in he paricular ensemble have o

be he saes o some ‘hing’: namely, he saes o a paricle a a lower scale. This means

ha saes mus be he saes o paricles (e.g., phenoypic saes) ha consiue he par-

icular saes a he nex scale (e.g., phylogeneic saes). This recursive ruism can be
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expressed in erms o groupingG operaor—ha creaes paricles—and a reducion R op-

eraor—ha picks ou cerain paricular saes or he nex scale:

( ) ( ) ( 1) ( 1){ } { } { } { }i i i i

n n mx x + +⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→R G R G R
(9)

The composiion o he wo operaors can be read as mapping rom he saes o par-

icles a one scale o he nex or, equivalenly, rom paricular saes a one scale o he

nex—in shor, creaing paricles o paricles, namely, populaions. See Figure 2.
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Figure 2. Schemaic showing he hierarchical relaionship beween paricles a scales i and i + 1. For

clariy, sensory and auonomous saes are illusraed in blue and pink, respecively. Noe ha each

variable is a (very large) vecor sae ha isel is pariioned ino muliple vecor saes. A scale i +

1, each paricle represens an ensemble (e.g., ( 1)i

m
+ is populaion m), he elemens owhich are par-

iioned ino auonomous and sensory subses (e.g.,
( 1)

n

i

m
+

is he n-h auonomous genoype rom

populaion m). A scale i, each paricle represens an elemen o an ensemble (e.g., ( )i is he -h
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phenoype), which is isel pariioned ino sensory and auonomous subses. The slow saes o each

elemen (e.g., phenoype) are recovered by he reducion operaor R, o urnish he saes a he

ensemble level (e.g., genoype). A key eaure o his consrucion is ha i applies recursively over

scales.

The reducion operaor R ypically selecs relevan variables whose slow ucuaions

conexualise dynamics a he scale below. Here, R simply recovers he saes o a paricle

ha are ime invarian or ha vary slowly wih ime (i.e., he iniial saes and ow param-

eers). This separaion o imescales means ha he lieime o a paricle (e.g., phenoype)

unolds during an insan rom he perspecive o he nex scale (e.g., evoluion). The sep-

araion o imescales could have been achieved wihou he grouping (pariioning) oper-

aor. We could simply have projeced ono he eigenvecors o a dynamical sysem’s Jaco-

bian, eecively aking linear (or nonlinear) mixures o our sysem o arrive a as and

slow coordinaes. However, all we would be le wih are as and slow coninuous varia-

bles ha have nohing o he characer o he individuals, phenoypes, or populaions in a

sysem. In shor, he grouping operaor is key in ideniying as and slow ‘hings’—as

opposed o jus as and slow coordinaes o a dynamical sysem.

In shor, he renormalisaion group operaor creaes paricles o paricles, reaining

only paricular variables ha change very slowly and hen grouping hem according o

heir sparse coupling. This means ha paricles increase in heir size rom one scale o he

nex—in virue o he grouping o paricles a he lower scale—and change more slowly—

in virue o he coarse graining aorded by emporal reducion.

In an evoluionary seing, he exisence o seady-sae soluions—implici in he

Langevin ormalism above—means ha phenoypic dynamics possess a pullback arac-

or. Thismeans heir pahs will reurn o he neighbourhood o previously occupied saes.

In oher words, heir ‘liecycle’ will inersec wih some Poincaré secion in phenoypic

sae-space (possibly many imes). We will ake his inersecion o be a mahemaical im-

age o persisence, which is underwrien by he ow parameers a any poin in evolu-

ionary ime.

A he phylogeneic scale, we have a pariion ino populaions o phenoypes based

upon which phenoypes inuence each oher. A his slow scale, saes can be read as char-

acerising he ‘kind’ o ‘hing’ ha has paricular saes a he scale below. We will, here-

ore, reer o saes a his level as (naural) kinds, noing ha he ‘kind o hing’ in quesion

does no change a he as scale. We can now rehearse he paricular pariion a he phy-

logeneic scale, noing ha or a populaion o exis, i mus have a paricular pariion.

Here, a populaion corresponds o a se o paricular kinds
( 1) ( , , , )ix s a +

= . These in-

clude external, sensory, active, and internal kinds.

i. External kinds o paricles are phenoypes ouside he populaion ha change as a

uncion o hemselves and sensory and acive kinds: c.., he arge o niche construc-

tion, rom a molecular hrough o a culural level, depending upon he scale o anal-

ysis [77,78].

ii. Sensory kinds mediae he eecs o exernal kinds on he inernal members o he

populaion in quesion: e.g., nuriens or prey.

iii. Active kindsmediae he eecs o inernal kinds on exernal kinds: e.g., agens who

mediae niche consrucion, rom a molecular hrough o a culural level, depending

upon he scale o analysis.

iv. Internal kinds inuence hemselves and respond o changes in sensory and acive

kinds.

This concludes our ormal seup. Nex, we consider he coupling beween as phe-

noypic and slow phylogeneic dynamics. As in oher applicaions o he ree energy prin-

ciple, his coupling emerges as a propery o any phylogeneics ha possesses an evolu-

ionary seady sae. In oher words, he idea here is o ideniy he properies o a sysem
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ha exiss, as opposed o ideniying he properies ha underwrie exisence. We will see

ha he emergen properies look very much like naural selecion.

2.4. Natural Selection: A Variational Formulation

To specialise paricular pariions o naural selecion, we will associae auonomous

(acive and inernal) kinds wih he (exended) genoypes ha consiue a populaion o

agents, noing ha here is no requiremen or agens o belong o he same equivalence

class—hey jus inerac, in virue o he sparse coupling ha denes heir grouping ino

a populaion. For example, some agens could be animals, and ohers could be plans.

A he phylogeneic scale, an agen is an auonomous kind rom a paricular popula-

ion. A he phenoypic scale, he agen has paricular (phenoypic) saes, whose dynam-

ics or pahs depend upon is (genoypic) kind. For ease o noaion, we will deal wih a

single populaion where he phenoypic sae o he n-h agen,
( 1)i

n
+

, will be denoed by

( )i (i.e., dropping he m in Figure 2). Wih his ormalism in place, we can ormulae he

coupling beween phenoypic and phylogeneic dynamics wih he ollowing lemma:

Lemma 1. (Variational tness): I, at non-equilibrium evolutionary steady state, the likelihood o

an agent’s genotype
( 1) ( )i i

n +
= R is proportional to the likelihood o its phenotypic trajectory

( )i (where\denotes exclusion),

( 1) ( 1) ( 1) ( 1)
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(11)

hen he ollowing holds:

An agen’s auonomous dynamics can be cas as a gradien descen on a Lagrangian,

whose pah inegral (i.e., acion) corresponds o negaive ness. This Lagrangian depends

upon he ow parameers (and iniial saes) supplied by he genoype. The agen’s geno-

ype can hen be cas as a sochasic gradien descen on negaive ness. This ormulaion

emphasises he relaionship beween gradiens on ness (selecion) and he sochasic

erms ha are uncorrelaed wih selecion (dri):
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(12)

Formally, he generalised gradien descen a he phenoypic scale corresponds o

Bayesian lering or inerence [76] ha maximises he marginal likelihood o phenoypic

pahs. This is almos auological, in ha i says ha deviaions rom he mos likely de-

velopmenal rajecory, given some genoype, are unlikely. An addiional subley here is

ha he Lagrangian, which plays he role o a Lyapunov uncion, is a uncion o sensory

saes. The implicaion is ha he gradiens are no saic, bu hemselves change based

upon he way in which he environmen ineracs wih a creaure during is developmen.

The sochasic gradien descen a he phylogeneic scale corresponds o Bayesian learning

via sochasic gradien Langevin dynamics [79], equipped wih solenoidal mixing [80].

On his Bayesian reading, phenoypic dynamics iner heir exernal dynamics, under

a probabilisic model o how exernal dynamics generae phenoypic dynamics. Inergen-

eraional geneic changes can be seen as learning he parameers o a generaive model,

given he Bayesian model evidence supplied by he scale below (e.g., exended pheno-

ype). This reading ress upon he acion (i.e., negaive ness) scoring he accumulaed

evidence ( | )p x or a phenoype’s generaive model, ( , | )p x  encoded by he
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exended genoype x . This evidence is also known as a marginal likelihood because imar-

ginalises over exernal dynamics; i.e., oher agens.

Proo. The condiion in (11) means ha he probabiliy o nding an agen o a paricular

kind is proporional o he likelihood o is phenoypic pah, namely, he likelihood a phe-

noype keeps o he ‘rodden pah’, characerisic o he ‘kind’ o ‘hings’ ha persis. The

exisence o a nonequilibrium evoluionary seady-sae soluion o he densiy dynamics

(a boh scales) allows us o express he as and slow dynamics o agens and heir auon-

omous saes in erms o Helmholt–Hodge decomposiions. From (1) and (2), we have

( ) ( 1)

( ) ( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1)( ) ( ) ( ) ( 1)

( (
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) )
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i i

i i i i i i i i i i

i ii i i i
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x
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+
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−   −



=  

=

+ = +

=   
(13)

The gradiens o surprisal a he slow scale, wih respec o any given agen’s ‘kind’ or

genoype, are he gradiens o acion by (11):

( 1) ( 1) ( 1)

( 1) ( 1) ( )
i i i
n n n

i i i

n  + + +

+ +    == (14)

Subsiuing (14) ino (13) gives he slow, phylogeneic dynamics in (12) (ignoring cerain

solenoidal erms). □

For he as, phenoypic dynamics, we assume ha random ucuaions vanish o

describe phenoypes ha possess classical (i.e., Lagrangian) mechanics, i.e., ha are dom-

inaed by conservaive or solenoidal dynamics. In he limi o small ucuaions, he au-

onomous pahs become he pahs o leas acion, i.e., when he ucuaions ake heir

mos likely value o zero. From (4), he auonomous pahs o leas acion are as ollows

(seing 1 = ):

( )

( ) ( ) ( ) ( )( | )i

i i i ix


  = −D (15)

Subsiuing (15) ino (13) gives he as dynamics in (12).

Remark 1. Note that the extended genotype
( ) ( ) ( ) ( 1){ , }i i i ix    +
=  includes the initial

states o the extended phenotype. In other words, the extended genotype covers both the genetic and

epigenetic specication o developmental trajectories and the initial conditions necessary to realise

those trajectories, including external states (e.g., conditions necessary or embryogenesis),
( ) ( )(0) i i  .

A useul inuiion as o he biological role o he Lagrangian in Equaion (11) is ha

i species he saes (or rajecories) o a sysem ha has achieved homeosasis. The unc-

ion will reurn a small value when physiological measuremens are wihin homeosaic

ranges, and increasingly large values as deviaions rom hese ranges become larger. The

condiioning upon slow (genoypic) variables means ha dieren sors o homeosaic

ranges are allowable or dieren sors o phenoypes. The relaionship beween he (as)

acion and (slow) Lagrangian in Equaion (11) implies ha phenoypic rajecories—in

which homeosasis is mainained—are associaed wih genoypes ha are more likely o

be replicaed. More precisely, he Lagrangian avours (i.e., is pah inegral is smaller or)

hose rajecories in which opporuniies or replicaion are aained—and successul

mainenance o homeosasis is only one aspec o his.

The suppression o random phenoypic ucuaions does no preclude iineran ra-

jecories. Indeed, i oregrounds he loss o deailed balance and accompanying nonequi-

libria ha characerise phenoypic and populaion dynamics [81–83]: or example, bio-

rhyhms and chaoic oscillaions a he phenoypic scale [84–88] or Red Queen dynamics
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a he phylogeneic scale [83,89,90]. A sysem ha has he propery o deailed balance is

one in which ime reversal makes no qualiaive dierence o he dynamics o ha sysem.

The implicaion is ha sysems in which he solenoidal ow is zero possess deailed bal-

ance, while hose wih a non-zero solenoidal ow do no. The presence o solenoidal ow

means ha ime reversal also leads o a reversal in he direcion o his ow. Please see

[31] as a relaively recen example o he Helmholt–Hodge decomposiion in Darwinian

processes and [80] or a generic reamen o sochasic chaos in his seing. Furhermore,

here is no requiremen or he grouping operaor o reurn he same pariion a each

insan o is applicaion. This ollows because he grouping operaor is deermined by

sparse coupling among paricles a he scale below, which isel may change as cerain

paricles become ‘shielded’ rom ohers [91]: or example, during he sel-assembly o par-

icular pariions associaed wih cell-division, mulicellular organisaion and develop-

men [57]. Mahemaically, his permis wandering ses (i.e., pariions) a each scale,

where ness gradiens remain well-dened, because hey inheri rom he dynamics o

he scale below.

Implici in he renormalisaion group consrucion is he noion ha variaional se-

lecion could operae amuliple scales. In oher words, alhough ramed in erms o na-

ural selecion and evoluion, he variaional ormulaion above does no commi o sepa-

raion o emporal scales ap or replicaion or reproducion. Any selecive mechanism

ha ulls he ness lemma (Lemma 1) will, in principle, be subjec o he same selecive

mechanics. Common examples could include he opimisaion o weighs in neural ne-

works and heir srucure learning [45,76,92]. In a biological seing, his selecion process

could correspond o developmenal sages ha havewell-dened (separaion o) emporal

scales. Finally, we ake a closer look a phenoypic dynamics and explain why hey can be

consrued as senien behaviour.

3. The Sentient Phenotype

An onological inerpreaion o phenoypic dynamics—in erms o senien behav-

iour or acive inerence—obains by expressing he Lagrangian as a variational ree energy.

For clariy, we will drop he sub- and superscrips (and condiion on he exended geno-

ype x ) o ocus on he generalised saes o a given phenoype.

Lemma 2. (Variational ree energy): I the autonomous dynamics o a particle or phenotype evince

classical (Lagrangian) mechanics, then they can be expressed as minimising a variational ree en-

ergy unctional o Bayesian belies—about external states—encoded by their internal phenotypic

states, ( )p  , under a generative model encoded by their (extended) genotype
0( , | )xp x  :
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(16)

This variaional ree energy can be rearranged in several ways. Firs, i can be ex-

pressed as an energy consrain minus he enropy o he variaional densiy, which
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licences he name ree energy [93]. In his decomposiion, minimising variaional ree en-

ergy corresponds o he maximum enropy principle, under he consrain ha he ex-

peced Lagrangian is minimised [51,94]. The energy consrain is a uncional o he mar-

ginal densiy over exernal and sensory saes ha plays he role o a generaive model

(i.e., parameerised by he exended genoype), namely, a join densiy over causes (exer-

nal dynamics) and heir consequences (auonomous dynamics). Second—on a saisical

reading—variaional ree energy can be decomposed ino he (negaive) log likelihood o

paricular pahs (i.e., accuracy) and he KL divergence beween poserior and prior densi-

ies over exernal pahs (i.e., complexity). Finally, i can be wrien as he negaive log evi-

dence plus he KL divergence beween he variaional and condiional (i.e., poserior) den-

siy. In variaional Bayesian inerence [95], negaive ree energy is called an evidence lower

bound or ELBO [96–98].

Proo. The sparse coupling—ha underwries a paricular pariion—means auonomous

pahs (i.e., generalised saes) depend only on sensory pahs. This means here is a (deer-

minisic and injecive) map rom he mos likely auonomous pahs (o sufcienly high

order generalised moion) o he condiional densiy over exernal pahs, where boh are

condiioned on sensory pahs. This injecion means we can consider he condiional den-

siy over exernal pahs as being parameerised by inernal pahs. We will call his a varia-

tional density (noing rom (6) ha inernal pahs are condiionally independen o exernal

pahs):
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This deniionmeans ha he Lagrangian and variaional ree energy share he samemin-

ima, where heir gradiens vanish:
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I auonomous dynamics are conservaive, heir rajecory is a pah o leas acion and we

can replace he Lagrangian gradiens in (12) wih variaional ree energy gradiens o give

(16). □

Remark 2. The ree energy lemma (Lemma 2) associates negative tness with variational ree en-

ergy, such that phenotypic behaviour will appear to pursue paths o least ree energy or greatest

tness. Because variational ree energy is an upper bound on log evidence, the pursuit omaximum

tness can be read as sel-evidencing [99]: namely, actively soliciting evidence or generative models

endowed by evolution. In short, autonomous dynamics (appear to) actively iner external states

under a generative model, whose parameters are (apparently) learned by minimising a path integral

o variational ree energy.

The uncional orm o variaional ree energy licences a eleological inerpreaion o

auonomous dynamics; he inernal pahs can be read as he sufcien saisics or param-

eers o (approximae) Bayesian belies abou exernal saes, while acive pahs will
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(appear o) change he poserior over exernal saes o ‘’ inernal (Bayesian) belies. In

oher words, acive dynamics will look as i hey are rying o ull he predicions o

inernal represenaions. A complemenary inerpreaion inheris rom he decomposi-

ion o variaional ree energy ino complexiy and accuracy. Minimising complexiy

means ha generalised inernal saes encode Bayesian belies abou exernal saes ha

are as close as possible o prior belies, while generalised acive saes will look as i hey

are changing sensory saes o realise hose belies. These inerpreaions—in erms o per-

ception and action—urnish an elemenary bu airly expressive ormulaion o acive in-

erence. For example, he ree energy ormulaions above have been used o emulae many

kinds o senien behaviour, ranging rom morphogenesis [100], hrough acion observa-

ion [101], o birdsong [102].

Alhough no developed here, he renormalisaion group consrucion means hawe

can apply he same argumens o auonomous kinds—i.e., agens—a he slow scale. In

oher words, on average, he exended genoype o inernal kinds comes o encode Bayes-

ian belies abou exernal kinds, while acive kinds will look as i hey are rying o realise

hose belies, via niche consrucion [77,103–105]. In virue o he minimisaion o varia-

ional ree energy, we have an implicimaximum enropy principle, which brings us back

o [21,22] via [49].

4. Variational Recipes

Eecively, we are describing he evoluionary developmenal process wih he ol-

lowing proocol:

i. Firs, generae an ensemble o paricles (i.e., exended phenoypes) by sampling heir

ow parameers and iniial saes (i.e., exended genoypes) rom some iniial den-

siy.

ii. For each paricle, nd he pah o leas acion using a generalised Bayesian ler (i.e.,

acive inerence).

iii. Aer a suiable period o ime, evaluae he pah inegral o variaional ree energy

(i.e., acion) o supply a ness uncional.

iv. Updae he ow parameers and iniial saes, using a sochasic gradien descen on

he acion (i.e., Darwinian evoluion).

I his proocol were repeaed or a sufcienly long period o ime, iwould converge

o an aracing se, assuming his pullback aracor exiss [32]. In saisical mechanics,

his would be a nonequilibrium seady sae, while in heoreical biology, i would corre-

spond o an evoluionary seady sae, a a cerain imescale.

The noion o a seady sae is clearly an idealizaion, as i assumes an unchanging

environmen. The local environmens o all organisms are, however, moving arges,

largely due o he aciviies o oher organisms. Even i all o Lie is considered a single

populaion, i aces a changing local (i.e., biospheric) environmen due o is—Lie’s—own

aciviies, as well as o bolide impacs and oher abioic causes. Hence, we can expec evo-

luion o remain always ‘in process’ even or large, diverse populaions. The assumpion

o an asympoic evoluionary seady sae is, hereore, eecively an assumpion o a

local (in ime) seady sae ha has a lieime long enough or evoluionary processes o

be signican bu shor enough ha he local environmen o he evolving sysem can be

considered approximaely xed. We now conclude wih a simple applicaion o he above

proocol o a special case o selecion in neurobiology.

A Numerical Study o Synaptic Selection

Figure 3 shows he resuls o a numerical sudy o selecion processes, using he var-

iaional procedures above. This example illusraes he inerplay beweenminimising var-

iaional ree energy over somaic lieimes and is use in selecing phenoypes a a slow,

ransgeneraional, imescale. This example considers a relaively sraighorward selecion

process in neurobiology, namely, synapic selecion in neurobiology, which illusraes he
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nesed scales over which ree energy minimising processes evolve. Specically, we simu-

laed a single neuron (i.e., nerve cell) immersed in an environmen consiued by poenial

pre-synapic inpus in he surrounding neuropil. Unbeknown o he neuron (or more spe-

cically, is dendriic ree), hese presynapic inpus ucuaed sysemaically wih spa-

ially srucured waves o acivaion. These waves could only be deeced by deploying

possynapic specialisaions (i.e., sensory saes) in an ordered sequence along he den-

drie. The deails o his simulaion are no imporan, and can be ound in [106]. The key

poin here is ha he cell’s adapive ness—read as negaive variaional ree energy—

depends upon predicing is synapic inpus hrough inernal, inracellular dynamics ha

recapiulae he exernal, exracellular or environmenal generaion o sensory (synapic)

inpus. However, o do his, he dendrie has o have he righmorphology, parameerised

by he locaion o synapses on he dendriic surace.

To model learning and inerence, he synapses were rendered more or less sensiive

o heir presynapic inpus by opimising heir sensiiviy (a.k.a., precision) wih respec

o variaional ree energy in a biologically plausible ashion (i.e., using elecrochemical

equaions o moion ha perormed a gradien ow on variaional ree energy). This

mean ha as he cell accumulaed evidence rom is presynapic environmen, is ree

energy decreased, and i became beer a predicing is presynapic inpus. However, his

abiliy o predic depends upon selecing synapses ha are locaed in he righ order,

along he dendrie.

To simulae synapic selecion, we used Bayesian model selecion o compare he ev-

idence or a cell’s model wih and wihou a paricular synapic connecion. I he ree

energy increased, he possynapic specialisaion was moved o anoher locaion a ran-

dom. This process was repeaed o simulae slow (Bayesian model) synapic selecion, un-

il he phenoypic morphology o he dendrie was ap or accuraely modelling (i.e., -

ing) he waves o pre-synapic inpu. In his example, he Bayesian model selecion used

Bayesian model reducion [107], based upon he opimised sensiiviy (i.e., precision) o

each synapse: very much along he lines o synapic regression and implici homeosasis

[108–110]. Figure 3 shows he progressive reducion in ree energy a a slow imescale as

he synapses ha enable he cell o predic or  is environmen are seleced.
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Figure 3. synapic selecion. This gure repors he resuls o numerical sudies using as ree-en-

ergy minimising processes o model phenoypic dynamics and slow ree-energy minimising pro-

cesses o selec phenoypic conguraions or morphologies ha, implicily, have he greaes adap-

ive ness or adap o  heir environmen. In his example, we ocus on he selecion o synapses

o a brain cell (i.e., neuron) ha samples presynapic inpus rom is neuropil (i.e., environmen).

The deails o he generaive model—used o simulae inracellular dynamics as a gradien ow on

variaional ree energy—can be ound in [107]. The key hing abou hese simulaions is ha—aer

a period o ime—cerain synapses were eliminaed i Bayesian model selecion suggesed ha heir

removal increased Bayesian model evidence (i.e., decreased variaional ree energy). (A): Findings

in [111] sugges ha neurons are sensiive o he paern o synapic inpu paerns. The image shows

a pyramidal cell (blue) sampling poenial presynapic inpus rom oher cells (yellow)wih possyn-

apic specialisaions (red). (B): In his model, pools o presynapic neurons re a specic imes,

hereby esablishing a hidden sequence o inpus. The dendriic branch o he possynapic neuron

comprises a series o segmens, where each segmen conains a number o synapses (here: ve seg-

mens wih our synapses each). Each o he 20 synapses connecs o an axon o a specic presynapic

pool. These provide presynapic (sensory) inpus a specic imes over he lengh o a dendrie. I

each o he 20 synapses were deployed in an orderly ashion across he ve segmens—as in he

conneciviy marix—an orderly sequence o possynapic acivaions would be deeced, and, im-

plicily. (C): The lower panels show he deploymen o synapic connecions over 64 ‘generaions’

(i.e., cycles), in which he precision (a.k.a. sensiiviy) o synapses was used o eliminae synapses i

hey did no conribue o model evidence. Each ‘lieime’ o he cell was 120 (arbirary) ime unis,

during which ime wo waves o acivaion were deecable. The upper panels score he ensuing

increase in marginal likelihood or adapive ness (negaive ree energy) over he 64 generaions.

The le panel shows he accompanying increase in he sensiiviy (i.e., log-precision) o he 20 syn-

apses as hey nd he collecive arrangemen hamaximises adapive  or model evidence or his

(neuronal) environmen.

5. Discussion

One insigh rom he above analysis is ha populaions are no necessarily quoien

ses o equivalence classes. Pu simply, here is no assumpion ha any given paricle

shares phenoypic or genoypic characerisics wih any oher paricle. This observaion is
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ineresing on wo couns. Firs, i suggess ha reaing a populaion as an equivalence

class o conspecics may no be sufcien, in he sense ha he populaion includes all o

he (naural) kinds ha inerac o mainain heir paricular pariion. The ac ha all ‘in-

dividual’ mulicellular eukaryoes appear o be holobions—eecively, complex, muli-

species ecosysems—bears his ou [95,96]. The ‘genoype’ o such a sysem is a probabiliy

disribuion o probabiliy disribuions, each o he laer over one o he componen ‘spe-

cies’ composing he holobion. The phenoype o he holobion, including is reproducive

success and hence ‘ness’ in he narrow reading, is a uncion o his bilevel probabiliy

disribuion. Dierenial raes o geneic change beween componen genomes—and he

ac ha acions a he phenoypic level can aler he genoype as a probabiliy disribuion

(e.g., humans can ake ani- or probioics)—complicae he dierence in characerisic

imes assumed in Lemma 1, as discussed urher below. Second, even i some agens share

he same genoype, heir phenoypes can specialise in disincways ominimise heir join

variaional ree energies. This is obvious in he case o mulicellular eukaryoes, all o

which exhibi diereniaion o cellular phenoypes during morphogenesis; see [89] or a

worked example specically employing he FEP ormalism, and [97] or simulaions

demonsraing hamulicellulariy wih diereniaion provides a generic means omin-

imising VFE rom he environmen. These consideraions ogeher mandae a quinessen-

ially co-evoluionary perspecive ha emphasises co-dependencies and co-creaion

[16,98–100].

However, he emergence o equivalence classes—e.g., ‘species’ o holobions—begs

explanaion. A poenial answer is he generalised synchrony beween paricles, as hey

nd heir join variaional ree energy minima—and become muually predicable; e.g.,

[52,91]. In an evoluionary seing, one can imagine he search or join variaional ree

energy minima leading o convergen evoluion or speciaion (Luc Ciompi, personal com-

municaion; [101]). Reproducion is, in all exan organisms, a maer o cell division, and

closely relaed cells reap a ree-energy advanage by working ogeher [97]. An eecive—

hough meabolically, morphologically, and behaviourally expensive—mechanism o

proec his advanage is sex. The prolieraion o species-specic morphological and be-

havioural specializaions, ogeher wih he suppression o sem-cell pluripoency re-

quired o render sex obligae [102] in ‘higher’ eukaryoes, aess o he success o his

sraegy. From he presen perspecive, sex is a paricularly elaborae eedback pahway—

rom he phenoypic o he genoypic scale—ha preserves he inegriy o he laer. I is,

in oher words, a mechanism ha decreases VFE or he genome a he expense o in-

creased VFE or he phenoype.

The synhesis o biological evoluion and developmen on oer here is an example o

a generalised synhesis: applicable, under he ree energy principle, o all kinds o hings.

This synhesis can be read as generaive models auopoieically generaing eniies and

hen using he ‘’ o he model o he niche as evidence or updaing he model, in a

cyclical process summarised in Figure 4.
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Figure 4. Phylogeny and onogeny as boom-up and op-down causaion.

6. Limitations

As wih mos applicaions o he ree energy principle, he variaional accoun alone

does no supply a process heory. Raher, i sars rom he assumpion ha a nonequilib-

rium (evoluionary) seady sae exiss and hen describes he dynamics ha he sysem

mus exhibi. Thus, he variaional accoun enables various process heories o be pro-

posed as specic hypoheses abou biological sysems. For example, he geneic variaion

in he above ormulaion ollows rom he Helmholt decomposiion or undamenal he-

orem o vecor calculus. However, he ensuing sochasic gradien Langevin dynamics

does no speciy he paricular processes ha give rise o his kind o dynamics, e.g., [103].

There are many candidaes one could consider: or example, simple rejecion sampling or

more involved geneic algorihms ha provide a plausible accoun o bisexual reproduc-

ion [104,105]. A compuaionally expedien way o evaluaing he requisie gradiens—

or example hose or simulaing aricial evoluion—could call upon Bayesian model re-

ducion [45,112]. Irrespecive o he replicaion or reproducion process, i mus, on he

presen analysis, conorm o a sochasic gradien ow on ‘ness’ wih solenoidal mixing

[72,78,79].

This openness o muliple process heories is an advanage o he curren approach,

boh in convergence siuaions in which diverse genomes produce very similar pheno-

ypes [112] and in he complemenary siuaions in which a single genome suppors di-

verse phenoypes. Neiher siuaion is rare: genomes as dieren as hose o Amoeba pro-

teus and Homo sapiens can produce amoeboid cells, and he diereniaed cells o any mul-

icellular organism illusrae phenoypic diversiy a he cellular level. While he general

heory oulined here merely requires ha some process exiss, we can realisically expec

one-o-many process mapping in boh direcions when dealing wih real biological sys-

ems.

The primary oering o his variaional ormulaion o naural selecion—rom an

empirical perspecive—is ha one can hypohesise alernaive orms or he Lagrangian.

Each choice o Lagrangian will have consequences no only or he dynamics over physi-

ological and developmenal imescales bu will also allow or predicions as o evoluion

over phylogeneic imescales. I is also worh noing ha he accoun o naural selecion

se ou here, in which genoypic evoluion depends upon he acion o phenoypic pahs,

applies o sysems ha saisy he variaional ness lemma (Lemma 1): namely, he like-

lihood o an agen’s genoype corresponds o he likelihood o is phenoypic rajecory.

While a plausible assumpion—ha is inuiively consisen wih Darwinian evoluion—

we did no examine he condiions under which his assumpion holds. This means here

is an opporuniy o urher he ideas se ou in his paper by examining he sors o
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sochasic sysems in which he variaional ness lemma (Lemma 1) holds. I could be

argued ha Lemma 1 mus hold a leas in hose sysems where he genoype ransorms

ino he phenoype reaining an equivalence wihin sochasic limis. For example, gene

expression is he mos undamenal level a which he genoype gives rise o he pheno-

ype, and his mapping rom genoype o phenoype is he subjec o he many process

heories sudied by developmenal biology. On a eleological view, one migh urher ar-

gue ha acive inerence is necessary o mainain a high degree o equivalence during he

course o his ransormaion and o preserve a correspondence beween genoype and

phenoype.

Available edge cases are, however, inormaive. Single muaions can induce sala-

ory changes in phenoype; a canonical example is he our-wingedDrosophila melanogaster

y produced by combining hree muaions, abx, bx3, and pbx o he bihorax complex in a

single animal [113]. In complemenary ashion, he planarian Dugesia japonica reproduces

by ssion ollowed by regeneraion and has a heerogeneous, mixoploid genome wih no

known heriable muans [114]; he phenoype o his animal has, however, remained sa-

ble or many housands o generaions in laboraories, and in all likelihood or millions o

years in he wild. The phenoype can, moreover, be perurbed in salaory ashion rom

one-headed o wo-headed by an exernally imposed bioelecric change; his alered phe-

noype is bioelecrically reversible bu oherwise apparenly permanen [115]. Engineer-

ing mehods can creae even more radically diverse phenoypes wihou geneic modi-

caions, as demonsraed by he ‘xenobos’ prepared rom Xenopus laevis skin cells, which

adopmorphologies and behaviours compleely unlike hose ha skin cells manieswhen

in he rog [116,117].

The availabiliy o experimenally racable edge cases o Lemma 1 provides an op-

poruniy o urher he ideas se ou in his paper by examining he sors o sochasic

sysems in which he variaional ness lemma (Lemma 1) holds. The kinds o edge cases

menioned above sugges, however, ha Lemma 1 could be weakened o holding ‘up o’

salaory evens, including abioic evens such as bolide impacs, aecing genoype, phe-

noype, or boh wihou subsanially aecing he heory. Any sysems ha survive such

evens—any sysemswhoseMarkov blankes remain inac—simply carry on, undergoing

learning, variaion, and selecion as i he salaory even had never occurred.

One could sugges ha Lemma 1, and he broader scope o he ormalisms described

here, may be applicable o sysems where a populaion o eniies engages in inergenera-

ional replicaion (modelled here using he renormalisaion operaions), and where hose

eniies a a aser imescale engage in rapid adapaion (e.g., developmen, learning, be-

haviour, modelled wih acive inerence) during heir lieime. These wo levels could, or

example, model how genome-based inergeneraional evoluion ses iniial condiions or

organismal molecular and behavioural developmens. For he aser inra-generaional

scale, he exernal saes model he maerial basis o wha he phenoype is a generaive

model o. For he slower iner-generaional scale, he exernal saes are updaed hrough

ime as a process o renormalisaion (reducion and grouping) o he exended genoype-

phenoype.

7. Conclusions

This work aemps o uniy he slow, muli-generaional phylogeneic process o na-

ural selecion wih he single-lieime, phenoypic process o developmen (equaions and

noaion summarized in Supplemenary Maerials). In his perspecive, a bidirecional

ow o inormaion occurs as evoluion imposes op-down consrains on phenoypic pro-

cesses, and acion selecion provides evidence ha is seleced or by he environmen (i.e.,

boom-up causaion). In his accoun, learning and inerence occur hrough updaing

probabilisic belies via Bayesianmodel selecion in evoluionary ime and acive inerence

in developmenal ime. The ness o (exended) genoypes and (exended) phenoypes is

seleced or hrough he minimisaion o he same ree energy uncional: Bayesian model

evidence or marginal likelihood.
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Furher sudies using boh simulaions and laboraory experimens are clearly

needed o es his ramework in he conex o paricular process heories ha propose

explici uncional connecions beween genoype and phenoype.While Lemma 1 is prima

acie plausible in he case o idealised ‘cenral dogma’ organisms in which phenoype is

largely deermined by genoype wihin a ighly consrained, essenially saic niche, he

relaion beween genoype and phenoype in holobions inhabiing realisic niches can be

expeced o be subsanially more complex. ‘Egaliarian’ organisms, e.g., obligae symbi-

ons or holobions, comprising cells wih dieren genoypes [118] and engineered sys-

ems—ha oer cells radically dieren environmens han hey have experienced in phy-

logeneic evoluion o dae [119]—may be o paricular ineres or such sudies.
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