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Abstract: The symbol grounding problem is the problem of specifying a semantics for
the representations employed by a physical symbol system in a way that is neither circular
nor regressive. The quantum system identification problem is the problem of relating
observational outcomes to specific collections of physical degrees of freedom, i.e., to specific
Hilbert spaces. It is shown that with reasonable physical assumptions these problems are
equivalent. As the quantum system identification problem is demonstrably unsolvable by
finite means, the symbol grounding problem is similarly unsolvable.
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1. Introduction

The symbol grounding problem (SGP) was introduced by Harnad [1] as a generalization and
clarification of the semantic under-determination issues raised by Searle [2] in his famous “Chinese
room” argument. With reference to a “physical symbol system” model of cognition that posits purely
syntactic operations (e.g., [3–6]), Harnad stated the SGP as follows:

How can the semantic interpretation of a formal symbol system be made intrinsic to the
system, rather than just parasitic on the meanings in our heads? How can the meanings of
the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes,
be grounded in anything but other meaningless symbols?

[1] (p. 335)



Information 2014, 5 173

Here “the meanings in our heads” refers to the semantics assigned to a symbol system by the theorists
who devised it; the SGP can thus be seen as the problem of freeing semantics from the need for a
third-party interpreter, or as Harnad put it, making the semantics “intrinsic” to the symbol system.
Taddeo and Floridi [7] emphasized this aspect of the SGP by reformulating it as a requirement, the
“zero semantical commitment condition,” that must be satisfied by any theory purporting to explain
how the representations employed by any system, whether or not they satisfy the strict conditions on
“symbols” and “symbol processing” specified in Harnad’s original formulation, obtain their semantics.
The zero semantical commitment condition rules out any purported explanations of the semantics of a
symbol system that either tacitly assume the semantics in question and hence are circular, or that tacitly
base the semantics on some deeper assumed semantics and hence are regressive.

From a purely formal, model-theoretic perspective, the SGP might be rejected out of hand as
not just unsolvable but ill-conceived. One might, in particular, argue from this perspective that
essentially-arbitrary stipulation is the only way any symbol or collection of symbols receives any
semantics, and hence that the idea of an “intrinsic” semantics of any symbol or symbol system is
incoherent. If this is the case, the SGP is clearly moot: any possible semantics is wholly dependent on
some stipulating agent, and hence is either circular or regressive. From a cognitive science perspective,
however, the SGP appears not just solvable but urgent. Human mental states, in particular, surely
refer to something or other independently of 3rd-party stipulations. The “meanings in our heads”
that Harnad worried about theories “parasitizing” are, after all, our meanings; they must be grounded
somehow. The SGP has, accordingly, been ranked as one of the major open problems in the philosophy of
information [8,9], and has received considerable attention from researchers in both artificial intelligence
and cognitive robotics (reviewed in [7]) and embodied and situated cognition (reviewed in [10,11]).
Recent approaches to the SGP have focussed on grounding semantics in motor actions, and transferring
these grounded semantics to symbolic representations via machine-learning algorithms that optimize the
action-symbol mapping based on feedback from the environment (e.g., [12–14]). The extent to which
such feedback from the environment embodies implicit semantic assumptions, for example in choices of
training sets, and hence the extent to which such machine-learning approaches satisfy the zero semantical
commitment condition remains open to question.

The present paper challenges all claimed solutions of the SGP by showing that under reasonable
physical assumptions the SGP is equivalent to the quantum system identification problem (QSIP), the
problem of determining which quantum system a given experimental outcome characterizes. The
quantum system identification problem is a generalization to quantum information theory of the system
identification problem for finite-state machines formulated within classical automata theory [15,16],
which itself is a formalized version of the well-known “blind men and the elephant” point that finite
observations are insufficient to fully and precisely characterize an observed object. What quantum
theory adds to the classical system identification problem is entanglement, and hence an in-principle
inability to observationally track even stipulated boundaries separating collections of physical degrees
of freedom, and hence even stipulated boundaries separating physical systems characterized by such
degrees of freedom, through time. The “reasonable physical assumptions” under which the SGP and
the QSIP are claimed to be equivalent are, briefly, that the non-symbols available as potential grounds
of symbols are physical entities, and that the physics that describes the dynamical behavior of these
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entities satisfies a fundamental symmetry, decompositional equivalence [17–19], that is satisfied by
minimal quantum theory, i.e., by quantum theory with no physical “collapse of the wave function.” As
all available experimental evidence indicates that minimal quantum theory—together with its extension
to the relativistic domain, quantum field theory—correctly describes the physical world (e.g., [20]), the
“reasonable physical assumptions” can be simplified to “symbols are grounded, if at all, by quantum
systems” where a “quantum system” is a physical system correctly described by minimal quantum
theory. It is worth emphasizing that the assumption that minimal quantum theory correctly describes
physical systems is an assumption that could, despite the evidence supporting it, eventually be shown to
be wrong; the correct description of physical systems could turn out to be Bohmian mechanics [21], a
stochastic collapse theory (e.g., [22]), or some other theory mathematically distinct from but currently
experimentally indistinguishable from minimal quantum theory. What is proposed here is that the
increasingly tight bounds being placed by experiments on any deviations from the mathematical structure
of minimal quantum theory render it a reasonable assumption. It has previously been shown that, under
this assumption, the QSIP is unsolvable by finite observational means [18,19,23]. Showing that the SGP
and the QSIP are equivalent shows, therefore, that subject to this assumption the SGP is unsolvable by
finite observational means.

That the QSIP and the SGP should be closely-related problems is, from a certain point of view,
completely straightforward. Experimental outcomes must be represented symbolically to be recorded
in a classical memory. Any such recording links a symbol representing the outcome value—
e.g., “αi”—to a symbol representing the quantum system of interest, e.g., “S” or “HS”. This linkage
may be indirect—for example, an outcome value may be linked to a measurement operation that is
itself linked to a specific system by being defined mathematically as an automorphism of the Hilbert
space of that system—but the structure of the quantum formalism guarantees that such a link will exist.
Determining which quantum system a given experimental outcome characterizes requires determining
what the symbol representing the quantum system of interest refers to. The QSIP thus requires that a
non-circular, non-regressive, operational semantics be provided for the formal expressions that refer to
“systems” in quantum theory; it requires that the systems to which such symbols refer be identifiable
in the laboratory. Solving the QSIP involves, therefore, solving at least a broad instance of the SGP,
the instance in which the symbols of interest refer to systems under investigation in the laboratory. The
SGP, in turn, requires at least an in-principle ability to explicitly identify whatever non-symbols serve as
“grounds” for physical symbol systems; without an ability to identify the claimed grounds, the claim that
they serve as grounds is effectively empty. If such non-symbols are physical entities correctly described
by minimal quantum theory, identifying them requires solving the QSIP. The present paper makes this
straightforward but informal relationship precise. In so doing, it shows that no semantics of symbols
that refer to quantum systems, which if minimal quantum theory correctly describes the physical world
includes all physical systems, can be “intrinsic” to the symbols employed.



Information 2014, 5 175

2. Preliminaries

2.1. Symbols and Grounds

What does it mean to “ground” a symbol? In the context of a physical symbol system as
defined by Newell and Simon [3], in which symbols are processed purely syntactically, “grounding”
a symbol requires relating it to something that is not a symbol, and hence not part of the network
of purely-syntactic relationships that define the symbol system. This grounding relation must be
non-arbitrary, in the sense of being independent of 3rd-party observers or theorists: that the grounding
relation holds must, in other words, be an objective, observer-independent fact about the world.
Harnad, for example, proposed that the symbols composing human or successful robot symbol systems
are grounded in “nonsymbolic representations” such as sensory transducer outputs that are related
to external objects solely by physical laws and physical facts about the structure of the perceiving
system’s body [1]; Pylyshyn’s earlier proposal that cognitive symbol systems get their semantics-bearing
inputs from “non-cognitively-penetrable” modules [6] expresses a similar criterion for “non-symbolic”
representations.

With the development of mobile robots capable of exploring open environments, motor actions can
be combined with sensory inputs to form coupled, multi-modal “nonsymbolic” representations. Recent
work in cognitive robotics has focussed on relating these multimodal non-symbols to symbols in a way
that optimizes some measure of the success of actions performed by the robot (e.g., [13,14]). In this work,
“grounding” becomes a functional measure: a symbol is grounded to the extent that its use contributes to
successful outcomes. As what counts as “success” in such scenarios is determined by the experimenter,
one could argue that even this action-based sense of grounding fails to achieve the zero semantical
commitment required by Taddeo and Floridi [7]. However, one could also construct situations in which
“success” was defined strictly by the environment —e.g., on Mars—with unsuccessful performance
being quickly fatal; such situations plausibly model those faced by organisms anywhere, and render the
derived semantics as naturalistic as may be achievable.

The key idea underlying both the early, largely philosophical concepts of grounding and the more
recent, robotic implementations is that the representational roles played by the non-symbols are fixed by
mechanical, physiological, or other non-cognitive regularities. Setting aside fine distinctions between
the languages and explanatory projects of the various non-cognitive sciences, these can be characterized
as physical regularities that characterize physical systems. All going solutions to the SGP can, therefore,
be characterized as grounding systems of syntactically-related symbols on regularities in the behavior
of physical systems; in information-theoretic terms, they propose that the information specifying the
symbol-ground relation is encoded not in “the meanings in our heads” but in the structure of the
physical world. To avoid circularity or regress, any such solution must assume that the relevant physical
regularities, and hence the physical systems that they characterize, can be identified independently of the
symbols whose semantics they encode. An arm moving along a certain trajectory, for example, can be
identified independently of the goals of the agent that is moving the arm; a red block sitting on a table
can be identified independently of an agent’s word for or experience of redness. This assumption of
independent identifiability is effectively an assumption of objectivity, and is most easily understood in a
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philosophically realist context in which “the world” is clearly distinguished from “the theorist’s mind.” It
is, moreover, only meaningful if “identifiability” includes re-identifiability over extended periods of time.
A red block that only lasts an instant cannot ground the symbol “red block”, especially if grounding is
taken to involve successful manipulative action; for an object or process to be a semantic ground, it must
both persist through time and be re-identifiable over time. In information-theoretic terms, the encoding
of the symbol-ground relation by the world must be considered to be both time-persistent and repeatedly
effective in enabling grounded symbol use by the relevant agent.

2.2. Systems, States and Observables

Regularities in the behavior of a physical system are regularities in the patterns of state transitions
executed by the system; observing such regularities involves observing the states of the physical system
over an extended period of time. Grounding a symbol on an observable physical regularity is, therefore,
grounding it on observations of physical state transitions; any instance of a process word such as “move”,
for example, is grounded on an observation—perhaps just a remembered observation—of something
moving. One can, therefore, describe grounding without loss of generality in terms of a dyadic relation
between a symbol and a subset of the states of a physical system. Hence the question of identifying
the ground of a symbol becomes the question of identifying a collection of states of a physical system,
something that can only be accomplished through observation.

Even in classical physics, observing the state of a physical system requires interacting with it; one
must bounce photons off of a red block, for example, to observe either its position or its redness visually.
The representation of observation by the action of a mathematical operator that is employed within
quantum theory is, therefore, completely general; classical observation is distinguished from quantum
observation by the mathematical structure of the state space on which such operators act, and by the
claim that all such operators commute. The outcome of an observation is, in either the classical or the
quantum case, a real (i.e., not complex) value, typically accompanied by a unit of measurement, for
example, “2 m”, “37 ns” or “15 kg”. A critical feature of such outcomes, often overlooked, is that they
must be recordable in a persistent memory, and to be in any way useful to either the observer or any
3rd party, actually recorded in a persistent memory. This requirement for persistent recording places a
powerful and principled constraint on both the outcome values themselves and any associated units: both
must be encodable as finite bit strings, and both must be actually encoded, by the observer, in a memory
device that can be accessed at a later time. While this requirement for finite encoding of outcomes is
so obvious as to appear trivial, it will prove below to have significant consequences for understanding
symbol grounding.

Because observations can only yield information about the current state of a physical system, in the
form of outcome values for the physical degrees of freedom—position, mass, electric charge, etc.—that
are probed by a sequence of measurement operations, it is natural to represent the physical system
itself by the abstract space comprising all of its physically-allowed states. The action of a measurement
operator on a system may change its current state—for example, bouncing sufficient photons off
of an object may change its temperature or even its position—but such an action does not change
what states are allowed for the system by the laws of physics; measurement operators are, therefore,
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automorphisms on physical state spaces. In classical physics, each physical state comprises one real
value for each of the system’s physical degrees of freedom; the assumed mutual commutativity of
classical measurement operators assures that all such values can, at least in principle, be measured
simultaneously. Quantum theory replaces this classical state space with a Hilbert space comprising
all linear combinations, with complex numbers as coefficients, of the allowed values of the system’s
physical degrees of freedom. Because not all quantum-theoretic measurement operators commute, it
is not possible to obtain simultaneous outcome values for all of the physical degrees of freedom of a
quantum system.

Here another fundamental assumption must be made explicit. Every meaningful observable is an
operator defined on and hence specific to a particular physical state space, that is, the state space
comprising the degrees of freedom of a particular physical system. It is convenient to write expressions
such as “x̂ = i~(∂/∂p)” to represent observables (here, the quantum position observable in momentum
space) without specifying the system on which they act, and hence to assume implicitly that the operator
acts on whatever state space is designated by the observer. Such expressions are, however, formally
ill-defined, and this shorthand notation systematically hides the location of the information needed to
specify the physical system being operated upon. Taken literally, a position operator without a system
specification is like a student who reports a list of position values but is unable to characterize the objects
in those positions, or even to say whether the same object was observed in each position. Observing the
position of a particular system S requires telling the student how to distinguish S from other things; in
quantum theory, it requires using the particular observable x̂S = i~(∂/∂pS) that acts on the particular
Hilbert space HS of S and on no others. Hence the question of indentifying the system S - for quantum
systems, an instance of the QSIP - can also be posed as the question of identifying the Hilbert space
HS, the position operator x̂S = i~(∂/∂pS) that acts specifically on HS, or any other observable defined
specifically on HS. Associating an outcome value αi with a quantum system S requires knowing that
αi was obtained as an outcome value by the application of an observable defined over HS, and not by
the application of a different observable defined over some other Hilbert space and hence some other
system. As with the requirement for finite encoding, this apparently trivial point that operators are
defined on and hence specific to particular state spaces will prove to have significant consequences for
symbol grounding.

2.3. Quantum and Classical

As noted earlier, all experimental evidence to date supports the correctness of minimal quantum
theory [20]; indeed quantum entanglement is now routinely observed over mesoscopic and macroscopic
spatial (e.g., [24–26]) and temporal (e.g., [27–29]) scales. This growing body of evidence renders the
existence of a domain in which physical dynamics are actually classical, as opposed to just approximately
and apparently classical, increasingly unlikely. In particular, it renders the existence of any physical
process of quantum state collapse that generates irreversibly classical physical states increasingly
unlikely. Thus while classical physics remains an obviously useful description of physical dynamics
for some systems at some scales, experimental evidence increasingly indicates that no physical systems
are actually classical. Even superselection “rules” that appear to restrict quantum systems to particular
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values of some degrees of freedom, for example to charge sectors, can be considered consequences of a
choice of quantum reference frame, and hence as not imposing actual classicality [30]. Classical physics
is, in other words, strictly an approximation: all physical systems are quantum systems. Hence it is
consistent, and in a strict sense only correct, to treat any physical system S as a quantum system and to
formally represent its states by a Hilbert spaceHS.

Again, as noted earlier, the idea that all physical systems are quantum systems is most
straightforwardly interpreted from a realist perspective, i.e., one that acknowledges that there are real
physical systems that have real physical degrees of freedom, and that all such systems behave as
described by quantum, as opposed to classical, physical theory. In particular, all ordinary macroscopic
systems such as tables and chairs and laboratory apparatus are composed of more fundamental physical
systems, the degrees of freedom of which are all correctly described by quantum, not classical,
physical theory. Observers interact with collections of these real physical degrees of freedom, including
the macroscopic collections that characterize macroscopic systems, via real physical interactions
representable as Hermitian operators defined over Hilbert spaces. It is difficult to fully abandon such
a realist stance and maintain contact with experimental practice. “Non-ontic” approaches to quantum
theory typically reject the existence of quantum states; Fuchs, for example, insists that “QUANTUM
STATES DO NOT EXIST” ([31] (p. 4), emphasis in original) and regards quantum theory not as a
literal description of the world but as a “users manual” for making probability judgments. Fuchs does
not, however, deny the existence of either physical degrees of freedom or physical systems. Indeed
while he regards physical systems as “autonomous agents” capable of surprising behavior, he requires
that they have well-defined, finite Hilbert-space dimensions that effectively limit their autonomy. He
also does not deny the physicality of measurement interactions; indeed he treats measurements as
causing the “experiences” of observers, which are limited in every case to the finite sets of outcomes
allowed by the Born rule applied to finite-dimensional Hilbert spaces ([31], Figure 1 and caption).
Anti-realism can, clearly, be taken farther than Fuchs takes it. On one possible reading of Wheeler’s “it
from bit” proposal [32] or even of Floridi’s “informational structural realism” [33], symbols constitute
fundamental reality and so cannot be “grounded” in anything non-symbolic even in principle (however
see [34] for Floridi’s own objection to this reading). If this anti-realist reading is accepted, there are by
definition no non-symbolic grounds for any symbol, so the SGP is clearly moot. In this case, moreover,
quantum “systems” themselves comprise symbols and symbols only and “observation” becomes a
mapping from symbols to other symbols. Here, the idea of doing an experiment in which non-symbolic
entities are manipulated is altogether lost; “observations” are simply manipulations of symbols and as
such are indistinguishable from theoretical calculations.

2.4. Summary

With these preliminary considerations in place, the informal relationship between the SGP and the
QSIP noted above can be rendered somewhat more precise. Solving the SGP requires providing a general
method for repeatably identifying the non-symbol(s) that serve, individually or collectively, as the ground
for a symbol or symbol system. These non-symbols can, without loss of generality, be considered to be
physical systems representable as Hilbert spaces. Solving the SGP, therefore, requires the ability to
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repeatably identify such physical systems. It therefore requires solving the QSIP. The QSIP, however,
can only be solved by observation. Solving the QSIP by observation requires acquiring, recording, and
comparing observational outcomes. Recorded observational outcomes are encodable as finite bit strings
and are therefore symbols. Comparing observations over time, therefore, requires grounding symbols,
i.e., it requires solving the SGP. The following two sections work through these steps in detail.

3. Solving the QSIP Requires Solving the SGP

Quantum theory is a formal, mathematical theory of the dynamical behavior of the physical world.
The original axioms laid down by von Neumann [35] have, since the development of decoherence
theory from the 1970s onward (e.g., [36–40]), been largely supplanted by axiomitizations that build both
real-valued observational outcomes and the Born rule into a single postulate regarding measurement.
Such axiomitizations avoid all mention of “collapse” and therefore yield the minimal quantum theory
assumed here. The recent textbook Quantum Computation and Quantum Information [41] provides a
particularly clear formulation of axioms of this kind:

(1) The state |U〉 of any isolated quantum system U may be represented as a unit vector in a Hilbert
spaceHU.

(2) The time evolution of |U〉 is unitary, and may be represented by a propagator e−(i/~)HUt whereHU

is the Hamiltonian operator characterizing U.

(3) Measurements of |U〉 may be represented as actions by a positive operator-valued measure
(POVM), a collection {EU

i } of positive semi-definite Hilbert-space automorphisms that sum to
the Identity, onHU.

(4) The components of an isolated composite system U may be represented by a tensor-product
structure (TPS) ofHU.

As shown in [41], the POVM formalism called for by axiom (3) generalizes the traditional formalism
of Hermitian observables and their associated von Neumann projections; in particular, any POVM
component Ei can be written as M †

iMi for some Hermitian operator Mi. There has been increasing
interest over the past decade in providing alternative, typically information-theoretic axioms for minimal
quantum theory (e.g., [42–46] among others); such alternatives must, clearly, be provably equivalent to
the standard axioms in their empirical predictions.

The QSIP arises as a practical problem whenever quantum theory is applied to make predictions
about observable outcomes. For example, if a prediction has been made that the position degrees of
freedom of electrons prepared in some particular way will have some particular statistical distribution
of values—e.g., be distributed as a double-slit interference pattern—testing this prediction requires an
ability to identify electrons that have been prepared in the particular way called for. Often this is a matter
of identifying an apparatus that reliably prepares electrons in the called for way, and confirming that
it is working correctly; in other cases, it is a matter of identifying an apparatus that detects electrons
that have been prepared in the called for way, and confirming that it is working correctly. Altering the
interpretation of the formalism does not obviate this requirement for identification. If the Heisenberg
“picture” of quantum theory, in which the idea that quantum states evolve over time as in axiom (2)
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above is replaced by the idea that observables—Hermitian operators or POVM components—evolve
over time, one is faced with the task of identifying, again as a practical matter in the laboratory, the
required time-varying observable, typically by identifying a detector that physically implements that
observable and confirming that it is working correctly. In every case, the apparatus or detector that
must be identified is a physical and therefore quantum system, however well its appearance or workings
may be described by classical physics. Also in every case, the apparatus or detector must be repeatably
re-identifiable over time; otherwise the replication of experiments is impossible.

The QSIP can now be stated explicitly: given a specification of a Hilbert spaceHS, a specification of
a POVM (i.e., a normalized collection of Hermitian operators) defined on HS, or a finite collection of
observational outcomes obtained with such a POVM, by what finite operational means can an observer
identify S? By what finite operational means, for example, can an experimenter determine whether some
system in front them has all and only the physical degrees of freedom, and all and only the dynamically
allowed values of those physical degrees of freedom, that are specified byHS? By what finite operational
means can an experimenter determine that an apparatus or a set of laboratory procedures implements all
and only the operations specified by a given POVM? As with classical system identification problems,
the QSIP can also be given a “reverse engineering” formulation: given a physical system, how can an
observer determine its Hilbert space? Given an apparatus or a set of laboratory procedures, how can she
determine the POVM that it implements?

Implicit in the statement of the QSIP is a requirement that multiple observers can use the same means
of identifying S, and that they can use these means at multiple times. To satisfy this requirement, any
means of identifying quantum systems must be both memorable and communicable; it must, therefore,
be expressible using a finite set of symbols, and hence a finite string of bits. The QSIP is, therefore, the
problem of identifying a physical system given a finite string of bits, and can be considered, without loss
of generality, to be the problem of identifying a physical system given a particular finitely-encoded
symbol such as “HS” or even “that voltmeter”. An uninterpreted symbol, however, is useless for
identifying a physical system; one can only employ “HS” to identify S, for example, if one knows
what “HS” means. Solving the QSIP, therefore, requires that the symbols employed to specify quantum
systems, write down POVMs, and record observational outcome values have semantics, and requires
moreover that the semantics of these symbols relates them not just to other symbols, but to collections
of physical degrees of freedom accessible to laboratory manipulation. Solving the QSIP, in other words,
requires having a grounded semantics for the symbols employed to specify physical systems and record
observational outcomes, and so requires solving the SGP.

It may be objected at this point that the symbols employed to specify physical systems and record
observational outcomes acquire their semantics not through some special solution of the SGP for the
language of physics or the language of non-cognitive science in general, but rather through the semantics
of ordinary, non-technical, natural language. All students of physics, for example, learn the language of
physics after they have learned a non-technical natural language. This objection carries weight, however,
only if symbol grounding is not problematic in such non-technical natural languages. This is not the
case: the SGP was formulated as a problem precisely because symbol grounding is problematic in
ordinary natural languages, and is studied by both cognitive scientists and robotics researchers in a
natural-language context. Hence solving the QSIP requires solving the SGP even if the semantics of
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symbols employed to specify physical systems and record observational outcomes are entirely derived
from the semantics of an ordinary natural language.

It may also be objected that the semantics of symbols such as “that voltmeter” can be understood
entirely in demonstrative terms, and that this demonstrative understanding of semantics can be extended
to cover all terms used to refer to physical systems and physical processes. Such an objection may
be pursued by noting that embodied, embedded agents are also able to manipulate objects in the
environment, and hence able to resolve potential ambiguities in the demonstration of an object by
manipulation followed by further demonstration. Such a process of demonstration accompanied by
manipulation in fact characterizes much of language learning by human infants (e.g., [47]), as well as
forming the basis of the robotic symbol-grounding approaches noted earlier. Extending this process
to a principled, as opposed to a “for all practical purposes” solution of the QSIP, however, requires
demonstrating that it yields all and only the required degrees of freedom in all cases, or at least in
all cases outside of some circumscribed set of exceptions. The insufficiency of finite observations for
classical system identification demonstrated by Ashby [15], Moore [16] and others suggests that no such
demonstration is possible; that this suggestion is correct is shown in Section 5 below.

4. Solving the SGP Requires Solving the QSIP

With the above considerations in mind, let us now examine the SGP. As noted earlier, solving
the SGP requires relating symbols to non-symbols, such as sensory transducer outputs or executable
representations of bodily motions, that obtain their semantics from observer-independent regularities
in the behaviors of physical systems. Establishing such relations between symbols and non-symbols
requires an ability to identify both the behavioral regularities and the physical systems in question
by observational means. The physical systems to be identified, however, are all quantum systems;
hence solving the SGP requires observationally identifying quantum systems. Solving the SGP requires,
therefore, solving the QSIP.

If solving the SGP requires solving the QSIP, one would expect that systematic failures to solve
the QSIP would cause, and therefore in practice correspond to, systematic failures to solve the SGP.
In particular, one would expect systematic failures to solve the QSIP underlying the failures to solve
the SGP due to circularity or regression that the zero semantical commitment condition is designed
to prevent. Such failures to solve the QSIP are in fact commonplace and have a specific form: they
are attempts to identify a quantum system that either assume classical properties of the system being
identified and are therefore circular, or assume classical properties of some system in interaction with
the system being identified and are therefore regressive. Indeed the cases characterized as “typical” above
are failures to solve the QSIP due to circularity: classical properties such as size, shape and color are
assumed in these cases to pick out a particular quantum system. Stated in terms of the SGP, in these cases
“nonsymbolic” sensory transducer outputs are assumed to be causal consequences of particular objects
in the world. Any such assumption violates the zero semantical commitment condition, as testing it
requires precisely the semantic assumption in question.

Circular and regressive assumptions are built deeply into the quantum-theoretic formalism, and
the ability to perform repeatable experiments arguably depends upon them. This is nowhere clearer
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than in decoherence theory, the main current approach to explaining the “emergence of classicality”
within minimal quantum theory (for textbook-length reviews, see [38,40]). Decoherence calculations
require both the specification of a TPS that divides the universe into a “system of interest” S and
its “environment” E and the specification of an interaction Hamiltonian HSE. They also require a
classical assumption: that the observer observes, and hence obtains classical information about, only
the system of interest. In particular, the observer does not obtain classical information about the state
of the environment, a condition that is often represented formally by assuming that the environment
can be represented as a classical statistical ensemble. This classical assumption is critical, as it is what
allows tracing out the off-diagonal terms in the interaction Hamiltonian. Classicality thus “follows” from
decoherence theory only because it is built in to decoherence calculations from the beginning.

This circularity at the heart of decoherence theory is amplified by attempts to provide decoherence
with a physical interpretation that ties it more directly to laboratory practice. The first question that
arises in any decoherence calculation is that of how to define the TPS that separates the degrees of
freedom composing S from those composing E. The standard answer is that the observer decides how to
structure this TPS by deciding what degrees of freedom are “relevant” or “accessible” in some particular
situation (e.g., [48,49]). Any such decision is clearly based on classical criteria, and so obviates any
claim that decoherence explains classicality. Zurek recognized that such dependence on decisions made
by observers rendered decoherence non-objective, noting that “it is far from clear how one can define
systems given an overall Hilbert space “of everything” and the total Hamiltonian” ([37] p. 1794) and
that “a compelling explanation of what the systems are—how to define them given, say, the overall
Hamiltonian in some suitably large Hilbert space—would undoubtedly be most useful” (p. 1818). The
“environment as witness” formulation of decoherence theory [50,51] is an attempt to provide such an
explanation by shifting the “decision” process from the observer to the environment; in this formulation,
observers interact not with S itself but with an encoding of the state of S in the state of E. This scenario
is clearly realistic as a description of laboratory practice: as Zurek [39] and others point out, observers
typically obtain information about objects by interacting with photons, phonons and other ambient fields.
It does not, however, solve the problem of objectively defining a TPS. The reason is that quantum theory
satisfies a fundamental symmetry, decompositional equivalence, that forbids physical dynamics from
depending on the TPS chosen to describe it. Decompositional equivalence is the symmetry that allows
the Hamiltonian of a closed system U to be written, if 3rd and higher-order terms are neglected, as
a sum HU =

∑
ij Hij , where Hij describes the pairwise interaction between two physical degrees of

freedom i and j of U, and that allows alternative TPSs HS ⊗ HE and HS′ ⊗ HE′ to describe the same
universe [18,19]. Any assumption that particular systems, and hence particular TPSs, are “preferred”
by physical dynamics violates decompositional equivalence. It cannot, therefore, be assumed that the
“environment” only encodes information about the states of particular systems; if the environment is
assumed to encode information about the states of systems embedded in it, it must be assumed to encode
information about the states of all such systems. In this case, however, observers must be regarded as
choosing which encoded information to extract from the environment, which is precisely the assumption
of relevance that the environment as witness formulation was designed to avoid [52].

The above analysis suggests that decompositional equivalence explains why circularity and regression
are such common points of failure for proposed solutions of the SGP: such solutions presume a mapping
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from symbols to non-symbols that cannot, in any universe satisfying decompositional equivalence, be
well-defined. Faced with this intrinsic ambiguity in the physical world, semantics has no choice but to
fall back on stipulation. Any such stipulation assumes the use of a language with well-defined semantics,
and hence succumbs to regression and, eventually, to circularity.

5. The Unsolvability of the QSIP Renders the SGP Unsolvable

Let HU = HS ⊗ HE be a TPS defined on a closed system U, {Ei} be a POVM defined on HS

and {αi} be a finite set of real, finitely-encoded outcome values. The QSIP can then be stated as the
question of whether {Ei} can be identified as the source of the values contained in {αi}, and in particular,
whether all alternative sources {E ′i} defined on alternative TPSs HU = HS′ ⊗HE′ can be conclusively
ruled out. That U satisfies decompositional equivalence is assumed by writing the TPSs as equalities
HS ⊗HE = HU = HS′ ⊗HE′ .

Consistent with the physical picture assumed by the environment as witness formulation of
decoherence theory, consider an observer embedded in E, or alternatively in E′, in such a way that
the observer’s local interactions with the environment have no effect on the S-E interaction HSE

(alternatively, on HS′E′) and hence no effect on the action of the POVM {Ei} (alternatively, on the
action of {E ′i}). The observer is free to collect a finite number of additional outcome values following a
finite number of non-destructive experimental manipulations of S (alternatively, of S′); such values will
be considered to be incorporated into the set {αi}.

Under these circumstances, the sequence of outcome values αj...αk obtained by the observer can be
considered to be a sequence of discrete states of a classical finite-state machine (FSM). Theorem 2 of
Moore ([16] (p. 140)) then applies, showing that no finite sequence of observations of the states of any
classical FSM is sufficient to identify the FSM. Hence no finite sequence of outcome values αj...αk

obtained by the action of a POVM is sufficient to identify the POVM. An inability to identify the POVM
being employed to make observations implies, however, an inability to identify the Hilbert space on
which the POVM being employed is defined, and hence an inability to identify the physical system
being examined. The QSIP is, therefore, unsolvable by finite observational means [23].

When considered in this way, as the task of inferring a unique system identification from a finite
number of discrete observations, the insolubility of the QSIP becomes obvious. Treating the (j + 1)st

observation as an observation of the same system that produced the jth observation, for example, already
involves an assumption that the system has maintained its identity as S, with no changes in physical
composition and hence in component degrees of freedom, between the two observations. The a priori
nature of this assumption and the difficulty of maintaining it in the face of a dynamic and uncontrollable
physical world have been known since Heraclitus (ca 500 BCE). Consideration of the processes by
which human beings re-identify perceived objects as the same individuals across gaps in observation
only reinforces the a priori nature of assumptions of object identity over time (e.g., [53]).

The unsolvability of the QSIP does not, of course, imply that observations are insufficient to
distinguish physical systems across the board. It rather implies the existence of a symmetry, called
“observable-dependent exchange symmetry” in [23], under which physical systems indistinguishable
by finite actions of some set of Hermitian operators that share eigenvalues form an equivalence class.
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Choice of a different observable may permit the observational differentiation of systems within a
previously-characterized equivalence class, by no finite combination of observables is sufficient to
demonstrate that any such equivalence class has only a single member, i.e., to uniquely identify a
quantum system.

The unsolvability of the QSIP by finite means renders the SGP unsolvable by finite means; indeed,
it shows that the SGP can only be solved to within an equivalence class under observable-dependent
exchange symmetry. What does it mean, then, to say that one can establish the referent of ‘that voltmeter’
by pointing to a voltmeter? If the reasoning above is accepted, it can only mean that speaker and hearer
agree that what appears to be a bounded enduring object of reference may be assumed, in context, to
be a bounded enduring object of reference. This is a semantic assumption that directly violates the zero
semantical commitment condition. It is good enough for all practical purposes, including all practical
scientific purposes, but it does not solve the SGP.

6. So What?

It is fair, at this point, to ask the question that can be asked of any meta-theoretical result: so what? In
the present case, this question can take at least two forms. First, the unsolvability of the QSIP has been
demonstrated in the context of minimal quantum theory, and minimal quantum theory is, as noted in the
Introduction, only an empirically reasonable assumption. What happens to the QSIP if this assumption is
wrong, and some theory that is empirically similar to but mathematically distinct from minimal quantum
theory turns out to be correct? Second, what does it mean to say that assuming that what appear to
be enduring objects of reference are enduring objects of reference is “good enough for all practical
purposes”? Does the unsolvability of the QSIP have any consequences in practice?

The answer to the first “so what?” question turns, as suggested at the end of Section 4, on whether the
physical theory that correctly describes the world satisfies decompositional equivalence. Finite observers
in any universe that satisfies decompositional equivalence are faced with observable-dependent exchange
symmetry [23]; hence finite observers in any such universe cannot solve the QSIP. Any theory that treats
a TSP of a state space as equal to that state space—i.e., any theory in which “tensor product” has its usual
meaning—satisfies decompositional equivalence. Determining whether the informally-stated ontology
of a theory is consistent with the usual tensor-product formalism, and hence with decompositional
equivalence, is however not straightforward. Bohmian mechanics, for example, treats “particles” as
classical entities and achieves “quantum-ness” by giving these particles highly-nonclassical trajectories.
Determining whether a Bohmian electron seen now is the same entity as a Bohmian electron seen
previously would require knowing its trajectory, which in Bohmian mechanics depends on the trajectories
of all other particles in the universe and is therefore unknowable by any finite observer. In the formulation
of [21], decompositional equivalence is assumed when it is allowed that particles can be grouped into
many-body systems in any arbitrary way. Bohm and Hiley infer the consequence of this explicitly:
separability of the quantum state of the multi-particle universe obtains only “in the classical limit”
and only in this limit can the universe be considered to have “relatively independent parts that interact
mechanically” ([21] (p. 332)). As any Bohmian observer is embedded within this Bohmian universe
and hence subject to observable-dependent exchange symmetry, such an observer cannot determine by
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observation whether the classical limit in fact obtains. As in minimal quantum theory, classicality in
Bohmian mechanics is at best an assumption that may serve for all practical purposes.

The second “so what?” question can be viewed as the question of whether observers may be missing
something of consequence by assuming separability, individual re-identifiability, or other characteristics
of the “classical limit” of minimal quantum theory or any other theory that satisfies decompositional
equivalence. It is difficult to address this question from a meta-theoretical perspective that assumes
classicality, which as Bohr [54] pointed out must be assumed, at least for laboratory apparatus and
observers, for experiments to be considered repeatable. It is clear, moreover, that the human cognitive
architecture enforces this classicality assumption pre-consciously whenever it re-identifies an object as
“the same thing” after a period of non-observation [53]. From this perspective, our “practical purposes”
cannot help but be ones for which an assumption of classicality is “good enough.” Whether we can devise
experimental manipulations that demonstrate violations of this assumption on ever-larger scales—for
example, experiments that demonstrate quantum entanglement at macroscopic spatial and temporal
scales simultaneously—only the future can decide. The last two decades of experimental physics at
least provide cause for optimism.

7. Conclusions

Given the equivalence and finite unsolvability of the QSIP and the SGP demonstrated here, the
symbols that represent observational outcomes have at best indeterminate reference. Each such symbol,
e.g., “αi” or “5 volts” can be associated with an equivalence class, under observable-dependent exchange
symmetry, of physical systems, but the boundaries of this equivalence class in the space of all TPSs of
HU cannot be determined by finite means. Whether any such symbol refers to the same member of any
such equivalence class in different instances of its use, i.e., as a recording of the outcome of a temporally-
or spatially-distinct experiment, likewise cannot be determined by finite means. Indeed the phrase “the
very same physical system” has no operational meaning; experiments can at best be replicated within
an empirically unbounded equivalence class of systems. This absence of meaningful individual identity
over time is familiar and well-accepted in the case of elementary particles ([55] provides a recent review);
the assumption of decompositional equivalence extends it to all physical systems.

The in-principle referential ambiguity of all symbols referring to physical systems demonstrated here
vindicates the model-theoretic view of semantics as fundamentally stipulative. It shows, in particular,
that the semantics of a symbol cannot be “intrinsic” to either the symbol or the symbol system in which it
is embedded as desired by Harnad [1] or Searle [2]; the apparently intrinsic semantics of human symbol
systems can only, on this reasoning, be an artifact of how their use is experienced. The current result is,
moreover, consistent with the claims of in-principle referential ambiguity of terms in natural languages
advanced by Quine [56,57] and others, and with the pragmatic approach to natural language semantics
that has been dominant since the later Wittgenstein (see [58] for review).

The present result is, finally, consistent with a view of quantum measurement as a semantic process
and of POVMs as semantic mappings that assign real values to states of U, and with the consequent view
of the “classical world” as a purely semantic construct as opposed to a physically-emergent collection of
objective entities [17–19]. This purely semantic view of classicality is an instance of what Landsman [59]
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calls “stance 1” regarding quantum theory, i.e., the stance that views quantum theory as literally correct
as a description of the physical world. The semantic view differs from the standard Everettian view [60]
in that it rejects the idea that “branches” or “worlds” characterize alternative states of a fixed collection
of systems, i.e., a fixed TPS ofHU. It raises an obvious question: what must be true about the dynamics
of U for a consensus semantics on the part of multiple observers to be possible even just “for all practical
purposes”? This is a fundamental question that physics has yet to answer.
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