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Abstract

Biological information processing is generally assumed to be classical. Measured
cellular energy budgets of both prokaryotes and eukaryotes, however, fall orders of
magnitude short of the power required to maintain classical states of protein confor-
mation and localization at the Å, fs scales predicted by single-molecule decoherence
calculations and assumed by classical molecular dynamics models. We suggest that
decoherence is limited to the immediate surroundings of the cell membrane and of
intercompartmental boundaries within the cell, and that bulk cellular biochemistry
implements quantum information processing. Detection of Bell-inequality violations
in responses to perturbation of recently-separated sister cells would provide a sen-
sitive test of this prediction. If it is correct, modeling both intra- and intercellular
communication requires quantum theory.

Keywords: Bioenergetics; Decoherence; Metabolism; Molecular dynamics; Pro-
tein conformation; Protein localization
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1 Introduction

Whether biological cells employ quantum coherence for information processing has been
controversial since Schrödinger [1] introduced the idea. The question gained prominence
when Hameroff and Penrose [2] proposed that neuronal microtubules function as quantum
computers and Tegmark [3] countered that decoherence renders quantum computation in
such systems infeasible; see [4, 5, 6] for continuing discussion. Recent studies in quantum
biology have largely focused on the role of single-protein scale coherence in photoreception
and magnetoreception in a variety of systems (see [7, 8, 9] for reviews). Both experimental
reproducibility and theoretical interpretation remain significant sources of controversy [10,
11].

Here we consider this question of biomolecular coherence from a bioenergetic perspective.
While some still contest it [12, 13], since the pioneering efforts of Turing [14], Polanyi
[15], Liberman [16], and Rosen [17] among others, the idea that biomolecular processes
are at bottom informational processes has become commonplace. Indeed any sequence of
state changes can, in principle, be considered “information processing” [18] and assigned
a thermodynamic cost independently of any higher-level functional considerations. State
changes can be either logically reversible or logically irreversible. A process ψi → ψj is
logically reversible if ψi can be fully recovered from ψj, i.e. if ψj encodes a “memory”
specifying ψi. Any process that fails this condition is logically irreversible. For example,
the logical operation AND: (p, q)→ p ∧ q given explicitly by:

p q p ∧ q
1 1 1
1 0 0
0 1 0
0 0 0

is logically irreversible: a unique input state (p, q) cannot be recovered whenever p∧ q = 0.
In general, any process that erases one or more bit values loses information about its
initial state and is therefore logically irreversible. While logically reversible information
processing has zero free energy cost, logically irreversible information processing has a
free-energy cost of at least ln2kBT per irreversibly-encoded (or erased) bit [19, 20, 21],
kB Boltzmann’s constant and T temperature. Hence logically irreversible informational
processes are thermodynamically irreversible at the scale at which individual bit values are
encoded. Measurements of cellular energy budgets can, therefore, place strict upper limits
on the bandwidths in bits of logically irreversible informational processes implemented
by biomolecular processes. They thus provide a sensitive test of models that represent
biomolecular processes as informational processes.

Consistent with the common assumption that quantum effects are significant only at the
atomic scale and below, biomolecular processes are typically represented, e.g. in diagrams
depicting metabolic or regulatory pathways, as fully classical, i.e. each molecule is repre-
sented as having a particular, determinate location, conformation, charge, etc. at every
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time step. This assumption of classicality is typically carried over into molecular dynamics
calculations at the Å, fs scale [22, 23]. Such processes are also typically presented as log-
ically irreversible: any biomolecular state that can be produced from multiple precursors
(i.e. any state with pathway fan-in greater than one) is, strictly speaking, encoded irre-
versibly, even if it spontaneously decays with high probability back to one of its multiple
possible precursors. Any biomolecular process that can be represented as Markovian, in
particular, is logically irreversible. Indeed a classical process on a fixed state space can only
be logically reversible if some component of each state is set aside to provide a persistent
memory, for the duration of the process, of the particular sequence of state transitions (i.e.
the execution trace) that produced it. This is the case, for example, for reversible classical
computations implemented by Toffoli gates [24]. This memory requirement can, clearly,
only remain finite if each process is completed in a finite number of steps, after which the
system as a whole reverts to a fixed initial state, expending the free energy required to clear
its memory. Approximate state reversion may occur in spiking neurons following the re-
fractory period, but it is not commonplace. Indeed state reversion would not, in general, be
expected in systems subject to natural selection and exposed to an unpredictably-changing
environment.

In contrast to classical computation, purely quantum computation implemented by a uni-
tary operator U is logically reversible by definition, i.e. for each such U , there is a unique
adjoint operator U † such that U †U = Id, the Identity operator, on all states ψ on which U
is defined [25]. Pure unitary quantum computation, therefore, has no free energy cost. Nor
does it have the memory overhead of classical reversible computation; the “memory” is ef-
fectively stored in the phase of each quantum bit (qubit), and makes itself evident through
phase interference between qubit states. The free energy cost of quantum computation
is, therefore, limited to the free energy cost of classically encoding the input and output
states, the cost of performing classical control operations, if any, and the cost of sufficiently
isolating the computational system from its environment [26]. Quantum computations im-
plemented by quantum gates [25], for example, are classically controlled by the connection
pattern of the gates, and hence incur an overhead cost that would not be borne by a single
unitary operation on all inputs [27].

We show here that assuming fully-classical, logically-irreversible, biomolecular implemen-
tations of cellular information processing at the 10s of ps to ms timescales of typical macro-
molecular processes [22, 28] overpredicts measured cellular free energy budgets by at least 10
to 20 orders of magnitude. We conclude that cellular information processing must employ
quantum coherence as a resource for reversibility in order to maintain a biologically reason-
able free energy budget. We show that cellular-scale quantum coherence is not only consis-
tent with, but supported by models of decoherence implemented at cellular or intracellular
boundaries. These bioenergetic considerations complement the more purely mathematical
arguments for cellular coherence previously advanced by Bordonaro and Ogryzko [29]. We
suggest that consequences of cellular-scale coherence may be detectable as supra-classical
behavioral correlations in pairs of daughter cells immediately following cell division.

We begin in §2 by distinguishing classical from quantum descriptions of macromolecular
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states, and macroscopic, ensemble-level degrees of freedom from microscopic, implementation-
level degrees of freedom. We define a cellular state space and characterizing the sector of
such a space that represents conformations and localizations of proteins. We then, in §3,
show that loss of quantum coherence, i.e. an irreversible quantum-to-classical transition
[30, 31], imposes irreversibility of macromolecular state transitions independently of the “in-
terpretation” of quantum theory [32, 33] employed, and even of whether standard quantum
theory or a modified theory incorporating a physical “collapse” mechanism [34, 35, 36] is as-
sumed. We move in §4 to explicit computations of protein-sector state-space dimensionality
for example prokaryotes and eukaryotes, then show in §5 that the measured cellular energy
budgets of these systems are 10 to 20 orders of magnitude below those required to support
fully-classical state-vector propagation, and hence fully-classical information processing at
the timescales of macromolecular dynamics, in the protein-sector state space. We interpret
these results in §6 using a fully-general, holographic model of decoherence as the encoding
of classical information by quantum interactions [37, 38, 39], and discuss predictions of this
model in §7.

2 Classical versus quantum state descriptions for the

protein sector

Treating any physical system as an information processing system, i.e. a computer, involves
an interpretation, implicit or explicit, mapping physical degrees of freedom to informational
degrees of freedom [18]. Hence a first step towards understanding cellular processes as
implementing information processing is to develop an explicit model of cellular states as
bearers of information. This requires distinguishing classical from quantum representations
of cellular state.

2.1 Classical versus quantum state descriptions

Suppose that a system S, which we will interpret below as a cell interacting with an external
environment, has some finite set F of degrees of freedom, each of which can have some finite
set V of distinct values. By assuming that V is finite, we are effectively limiting the values
to some fixed, finite resolution that sets the scale at which states can encode information,
and by assuming a fixed set V we are assuming, for simplicity, that each degree of freedom
can have the same number of distinct values. An instantaneous classical state of S can be
represented as an assignment of one value from V to each degree of freedom in F, i.e. as an
element of the Cartesian product F × V. The total number of allowed states of S is then
the cardinality Card(F×V). Letting Card(F) = N degrees of freedom and Card(V) = M
distinct values, and supposing for simplicity that M = 2n, i.e. each value can be represented
as a distinct n-bit string, the binary classical dimension dC(S) = Nn. Assuming equal a
priori probabilities for states s of S, both the Boltzmann entropy S(S) and the Shannon
[40] information I(s) in bits are given by dC(S).
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The classical states s ∈ F× V satisfy two notable constraints:

1. Determinate values: No degree of freedom can be simultaneously assigned two
distinct values, and

2. Separability: Values can be assigned to distinct degrees of freedom completely in-
dependently.

The first constraint is enforced by the definition of a state; the second is enforced by the
additivity of entropies associated with distinct degrees of freedom. A system S exhibits
quantum superposition if the first of these constraints is violated, and quantum coherence
(i.e. entanglement) if the second constraint is violated. Specifially, a pure quantum state ψ
of S can be represented as a normalized vector in a Hilbert space HS with dQ(S) = NM
and basis vectors |si〉 corresponding to the NM allowed classical states. We can represent
such a state at time t as:

ψ(t) =
∑
i

αi(t)|si〉 (1)

with the αi complex coefficients satisfying the normalization condition:∑
i

|αi(t)|2 = 1 (2)

at any t. The state ψ(t) is in general not separable, i.e. there is in general no decom-
position S = S1S2 for which ψ(t) = ψ1(t)ψ2(t). The component S1 cannot, in this case,
be assigned a state independently of S2. Indeed we can assume that ψ(t) is in general
maximally entangled, i.e. the entanglement entropy of an arbitrarily-chosen decomposition
S = S1S2 into components of equal dimension NM/2 will have maximal entanglement
entropy S(S1S2) ∼ NM/2. In this case, we can think of quantum coherence as “evenly
distributed” across ψ(t).

The dimension dQ(S) = NM of quantum states of S is manifestly larger than the dimension
dC(S) = Nn = N log2M of classical states of S. Hence quantum states encode, in principle,
more information that classical states. This excess information is stored as entanglement,
i.e. as phase correlations between entangled components of the state. This phase correla-
tion information serves as the “memory” that enables the perfectly reversible unitary time
evolution of pure quantum states.

2.2 Individual versus ensemble-level degrees of freedom

While individual macromolecular states, e.g. the states of individual receptors or kinases,
are bearers of information in processes such as signal transduction, directly measurable
degrees of freedom such as cellular energy consumption per unit time are defined only at
the bulk or ensemble level. The temperature T that determines the per-bit minimum energy
consumption ln2kBT is an ensemble-level degree of freedom. While bulk degrees of freedom
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such as shape, polarity, osmolarity, or membrane voltage can clearly carry information at
both subcellular and whole-cell scales, information encoded only at these macroscopic scales
will be of interest here only in its role in setting boundary conditions on the encoding of
molecular-scale information.

Bulk degrees of freedom are classical by definition, and the cost of encoding classical infor-
mation in logically irreversible bulk state transitions, which have characteristic timescales
orders of magnitude larger that macromolecular timescales, e.g. 10s of ms for neuronal
postsynaptic potentials, is trivial on a per-molecule basis. A process can, moreover, be
irreversible and hence energetically costly at the molecular scale, while being reversible
and energetically free when described by bulk degrees of freedom such as temperature or
molecular number density (i.e. concentration); individual molecular motions in an ideal gas
maintained at thermal equilibrium provides an example.

Ensembles of multiple replicates of quantum systems (not of quantum states by the no-
cloning theorem [41]) are represented as density operators ρS =def

∑
j |ψj〉〈ψj|, where the

states {ψj} are the basis states of S. Each replicate in such an ensemble occupies some
one of the pure states ψj at any given time; decoherence or collapse of a quantum ensemble
to a classical ensemble involves decoherence of each pure state in the ensemble. As we
will in general be interested in the states of individual molecules, we will employ density
operators only to represent states of ensembles of molecules, such as water, that are not of
immediate interest as information bearers. In practice, density operators also provide an
appropriate representation of time ensembles of pure quantum states as considered below;
however, this notion of an ensemble of quantum states must be strictly distinguished from
the idea of an ensemble of classical states. Thinking of a macromolecule as occupying a
“random” classical state, i.e. a single classical state sampled from an ensemble of classical
states, leads to erroneous bioenergetic predictions as detailed in §5 below.

2.3 Cellular state space and its protein sector

We now consider S to be a cell embedded in an environment E. For states of S to be
well-defined independently of E, we must assume separability of S from E. If both S and
E are described classically, this assumption is satisfied automatically; if either S or E is
described as a quantum system, a decoherence (or physical collapse) mechanism is required
as discussed in §3 below.

Representing the state of an entire cell explicitly at the molecular scale would require assign-
ing specific values to an enormously large numbers of degrees of freedom, e.g. the positions
and conformations of water and other small molecules, that are not directly involved in
informational processes of primary interest such as signal transduction or gene regulation.
The positions and conformations of both relatively stable and relatively transient nucleic
acids must also be taken into account. Here we neglect all of these, and focus exclusively
on the positions and conformations of proteins. These protein degrees of freedom and their
values can be considered a sector P of S; we will denote its complement P, i.e. PP = S.
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“Neglecting” P corresponds, formally, to tracing (effectively, averaging) over its degrees
of freedom, i.e. considering the density operator ρP = TrPρS as a representation of the
protein-sector state. As only the single system P is being considered, the implied ensemble
is a time ensemble as discussed in §3.2 below; hence writing ρP automatically invokes a
temporal coarse-graining. It is worth emphasizing that the information lost in this coarse-
graining is lost by us as observers; we choose to neglect the time-dependent information
encoded by P. Representing the state of P by ρP does not imply an information, and
hence reversibility, loss by the cell, and hence does not impact the present bioenergetic
considerations. As above, states of P and P are independently well-defined only if P and
P are separable.

Cells are viable only within small, homeostatic regions of their state spaces. Maintaining
their states within this homeostatic region, e.g. by preventing the denaturing of proteins
into conformations incompatible with their normal functions, is one of primary energetic
tasks of the cell, and is the task that is prioritized as resources become limited [42, 43]. As
the fable of Schrödinger’s cat [44] amply demonstrates, however, “viability” is a classical
concept that assumes cell–environment separability; it is a bulk degree of freedom only.
Individual states can, moreover, only be maintained within a limited region of the accessible
state space for mesoscopic or larger times: the time-energy uncertainty relation ∆t∆E ≥
π~/2 [45] allows the energy associated with individual molecules to diverge well beyond the
limits of whole-cell viability as the temporal interval ∆t decreases. Hence the question of
classicality is intrinsically a question of scale, to which we now turn.

3 Molecular scale decoherence imposes molecular-scale

irreversibility

3.1 Joint state evolution with and without decoherence

It is an axiom of standard quantum theory that time evolution of isolated systems is unitary
[47]. Any loss of quantum coherence, i.e. any decoherence, is due to interactions between
systems. In modifications of quantum theory that introduce a physical collapse mechanism,
loss of coherence is also attributed to interaction, either with a background noise field or
with gravity [48]. Hence the evolution of joint states of composite systems is critical for
decoherence.

Consider a finite composite system S = ⊕iSi that evolves through time, i.e. explores its
composite state space. If S is classical, each of the Si is classical and the joint state remains
classical at all times. If S is an isolated quantum system, the axiom of unitarity applies and
the joint state remains a pure quantum state at all times. If, however, we decompose S into
two components, i.e. write S = S1S2 and trace out the degrees of freedom of S2 to consider
just ρS1 = TrS2ρS, we can consider coherence to “dissipate” from S1 into S2 [30, 31]. This
is environment-induced decoherence or, if the component into which coherence dissipates
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is a background noise field or gravity, physical collapse. Efficient decoherence of S1 by S2

requires that S2 function as a coherence “sink” that is large enough that net coherence
does not flows “backwards” into S1. In this case, decoherence is effectively irreversible, i.e.
phase information is effectively lost by S1, and hence the decohered state of S1 is effectively
classical.

Unlike dissipated heat, however, lost quantum coherence is continuously regenerated by
the internal, self-interactions of both S1 and S2. Maintaining an effectively classical state
of S1 requires recurring decoherence (or collapse) to remove coherence as it is regenerated
by the self-interaction of S1. If the coupling between S1 and S2 and hence the decohering
interaction is weak compared to the internal interactions of S1 and S2, decoherence can
be considered to recur as a sequence of discrete events with characteristic time ∆tdec per
event and period λdec between events (cf. the treatment of collapse events in [48]). In
this case S1 and S2 can be treated as at least approximately separable and hence to have
independently-assignable states. As pointed out in [29], achieving effective separability
requires an appropriate choice of basis for the overall system S.

In addition to erasing quantum phase information, decoherence events separated by λdec
also irreversibly erase the previous classical state of the system being decohered, even if they
then re-encode a classically indistinguishable state. Previous state erasure is irreversible
due to the Born rule, i.e. to the probabilistic nature of classical-state selection,

Pi(t) = |αi(t)|2 (3)

with i the selected classical state and the αi(t) as in Eq. (2). Hence the minimal energetic
cost of ln 2kBT for erasure applies at every interval λdec even if only classical state erasure
is considered.

3.2 Single-molecule scale decoherence models

We consider it uncontroversial that the cell S and even its environment E can only ad-
equately be described in quantum-theoretic terms at some suitably microscopic scale, if
necessary the Planck scale, at which even spacetime must be given a quantum-theoretic
description [46]. The question is, therefore, not whether cells are quantum systems, but
rather at what spatiotemporal scale do they effectively cease to be quantum systems, i.e.
become amenable to classical descriptions that employ bulk concepts like viability (see the
discussion of this point in [10]). In line with the above, the decoherence scale must be
sufficiently large in both space and time to allow effective separability. As all relevant
components of cells are molecules with strong internal interactions that regenerate inter-
nal coherence, we can assume that efficient decoherence, and hence effective classicality,
requires that λdec ∼ ∆tdec.

The question of decoherence scale has generally been addressed not for whole cells, but
for individual molecules or macromolecular constructs embedded in cellular environments
that are assumed to be “effectively classical” a priori. Estimates of the decoherence scale
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at physiological temperature, i.e. the spatiotemporal scale (∆xdec,∆tdec) at which quan-
tum coherence is lost at T = 310 K, vary widely, from roughly (1 nm, 10−20 s) for single
ions [3] due to environmental decoherence to (25 nm, 10−8 s) for tubulin dimers [6] due
to gravitationally-induced collapse (see [31] for a general discussion of environmental deco-
herence estimates and [34, 49, 50, 51] for additional collapse model estimates). Proteins,
nucleic acids, polysaccarides, and even smaller organic molecules are standardly represented
as having determinate, separable, and therefore classical conformations and locations at the
Å, fs scale in the context of molecular dynamics calculations [22, 23]. For comparison, the
dynamic timescales ∆tdyn for typical macromolecular processes range from 10s of ps to ms
[22, 28]; see Fig. 1 for a summary.
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Figure 1: Temporal and spatial scales for macromolecular dynamics of interest, compared
to single-molecule decoherence timescales prodicted by collisional models (Eq. (4), (5)).
Further details on dynamic timescales can be found in [22]; details on cellular sizes can be
found in [52].

As an explicit example, consider the model of scattering-induced decoherence given by
Schlosshauer [31] following the original considerations of Joos and Zeh [53]. Here the
center-of-mass position x of an object X of radius a is decohered at the scale ∆x by
multiple scattering events in which X is impacted by “small” environmental particles of
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mass m and number density N/V . We can estimate the collisional decoherence timescale:

∆tdec(∆x) = Γ−1(∆x)−2 (4)

using the long-wavelength limit for the scattering constant:

Γ = (8/3)~−2(N/V )(2πm)1/2a2(kBT )3/2 (5)

([31], Eq. 3.58 and 3.73 respectively). Taking X to be a typical protein with a geometric
volume of roughly 50,000 Å3 = 5·10−26 m3 [54] in a water environment, ∆tdec(∆x) ≈ 6·10−19

s for ∆x = 1 nm, consistent with Tegmark’s estimate, via an electrostatic-interaction
model, of nm-scale position decoherence timescales for single ions in a cellular environment
on the order of 10−20 s at 310 K [3]. As molecular conformation is a function of the
relative positions at Angstrom scales of amino-acid side chains or other small moities,
individual conformation-angle decoherence times ∆tdec(∆ϕ) for ∆ϕ ≈ 10◦ can be expected,
using this collisional model, to be roughly four orders of magnitude longer, i.e. in the
fs range. In either case, we can assume the period between decoherence events λdec ∼
∆tdec to maintain effective classicality as discussed above. For comparison, the time-energy
uncertainty relation gives the minimum dissipation time scale at ∆Eth = ln2kBT as ∆tdiss ≥
π~/(2∆Eth) ≈ 50 fs, roughly the time scale of molecular-bond vibrational modes and
considerably shorter than dynamical timescales relevant to side-chain motion or peptide-
bond hinging [22].

The collisional decoherence model given by Eq. (4) and (5) assumes, as does the electrostatic
model used in [3], an unstructured object X in an effectively thermal local environment.
The decoherence-inducing interactions are, in particular, assumed to be mutually indepen-
dent. It is not, however, clear that this independence assumption can be made for a typical
cellular environment. The most plausible cellular candidate for a decohering environment
is water undergoing thermal motion. Treating the water as an ensemble with a density
operator ρW at the relevant scale, independence requires that any decomposition ρW = ρAB

into component ensembles A and B must be separable, i.e. ρW = ρAρB, and have entan-
glement entropy of zero. These separable water ensembles must absorb coherence from
macromolecular states and either dissipate it within the water state ρW itself or transport
it to the extracellular environment, in either case while maintaining the separability of ρW ,
efficiently enough to decohere all macromolecular degrees of freedom within a timescale
∆tdec(cell) << ∆tdyn, the classical dynamic timescale. The existence of highly-structured
hydration layers around macromolecules [55, 56], however, renders the assumption of sepa-
rability for the water component of the cell unrealistic. Indeed it is far from clear that local
hydration layers effectively remove coherence; they could instead function as local “memo-
ries” from which coherence information could be retrieved. There is, moreover, no obvious
mechanism for “exhausting” quantum coherence from the local decohering environment of
each macromolecule, whatever its structure, to the external environment of the cell, which
on average is located a macroscopic distance, many orders of magnitude larger than the
decoherence length, away from the site of decoherence. Similar questions can be raised
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about the assumptions of dissipative (i.e. energy-conserving) collapse models, the allowed
scales for which have now become highly restricted by experimental tests [57, 58].

Setting such considerations of model assumptions aside, however, any model of coherence
loss at the molecular scale within cellular interiors predicts a fully-separable, effectively-
classical cellular state in which each macromolecule occupies a determinate molecular-scale
state (e.g. has determinate conformation and location) at every timestep of length ∆tdec and
traverses a classical state space under the action of local forces at every timestep of length
∆tdyn ≥ ∆tdec. Each amino-acid side chain, in particular, explores ϕ-angle space in discrete
units of ∆ϕ in timesteps of ∆tdec, which we can assume to be≈ fs time steps as shown in Fig.
2. Given ∆tdec(∆x) << ∆tdec(∆ϕ), this variation in conformation angles is independent of
the much faster (we can assume ≈ attosecond) exploration of whole-protein center-of-mass
position space. Assuming independent peptide bonds, each individual angular evolution can
be represented as a classical Markov process Mij : ϕi → ϕj. In this picture, interactions
that effectively “measure” a conformational state, e.g. binding to an enzymatic reaction
center, sample a classical (ergodic) ensemble {ϕk} of temporal width ∆tint on the order
of ns to µs, i.e. ∆tint >> ∆tdec; averaging over this ensemble yields a coarse-grained,
biologically-relevant outcome value < ϕ >. Classical molecular dynamics calulations at Å,
fs scales model this Markovian evolution; the huge numbers of iterations needed to reach
biologically-relevant time scales contribute to issues of both accuracy and feasibility [22].
Hybrid quantum mechanics/molecular mechanics (QM/MM) methods allow the treatment
of small numbers of small molecules, e.g. water molecules and individual ions, as undergoing
(approximately) unitary evolution within classical boundary conditions [59]. The effective
∆tdec in such a model is the fs-scale time step with which the boundary conditions, and
hence interactions with the classical simulation are updated.
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Figure 2: a) Time evolution of a conformational state (ball-and-stick cartoon) driven by
a classical Markov process Mij. The conformational state is classical in every interval of
length at least the decoherence time ∆tdec. Interactions that “measure” the conformational
state, e.g. binding to an enzymatic reaction center, sample a classical ensemble {ϕk} of
temporal width ∆tint >> ∆tdec to obtain a coarse-grained outcome < ϕ >. b) Time
evolution of a coherent superposition ϕ =

∑
i αiϕi of molecular states ϕi with amplitudes

αi. Assuming separability, binding to an enzymatic reaction center with characteristic time
tmeas effectively decoheres a particular outcome ϕk with probability |αk|2.

In the opposite, quantum limit of no internal decoherence, the state of a notionally isolated
degree of freedom ϕ evolves as a superposition |ϕ〉 =

∑
i αi|ϕi〉 under the action of a unitary

propagator Pϕ(t) as discussed §2.1 above. In this case, binding to an enzymatic reaction
center R with characteristic time ∆tint introduces, given an assumption of initial-state
separability, external interactions that effect decoherence, i.e. ∆tdec =def ∆tint, to some
particular outcome ϕk with probability |αk|2. If initial state separability is not assumed,
such an interaction results in further entanglement of the joint state |ϕR〉.
Interventions into the cellular state from the external environment, e.g. to perform mea-
surements, inevitably induce decoherence as discussed in §6 below. Hence nondisturbing
measurements are essential to probe the cellular state for large-scale coherence. As mea-
surements of total cellular energy budgets place upper limits on the total number of classical
bits encoded by irreversible processes, they provide a nondisturbing, quantitative, model-
independent probe for the energetic consequences of irreversible decoherence or collapse
processes acting at the macromolecular scale. Such measurements involve thermal coupling
and are, therefore, insensitive to the states of individual molecules. They do, however,
allow quantitation of the total number of macromolecular degrees of freedom, however

13



distributed across individual macromolecules, that occupy determinate, separable states
over macroscopic times. They therefore provide a sensitive test for bulk classicality at the
macromolecular scale.

4 Empirical data fix protein sector dimensions

In order to estimate minimum energetic requirements for irreversible informational processes
implemented by proteins in effectively-classical states, we first estimate the dimensionality
of the protein sector P under a classical description. We can, without loss of generality, treat
state vectors as binary-valued and estimate their dimensionality d in bits as discussed in
§2.1 above. The dimensionality d(Conform) of the conformational component of P can then
be estimated as the average number of bits required to specify a single protein conformation
times the number of proteins. Assuming an average length of 333 amino acids, specifying
the conformation of a typical protein ab initio requires roughly 103 bits [60]; restricting
each amino-acid side chain to one of three possible configurations would decrease this to an
average of 10 bits/protein. The protein content of cells can be estimated roughly as 40% of
dry mass [61]; measured values in representative species are reviewed in [52]. Mean per-cell
mass values for four taxonomic groups of prokaryotes [62] give estimated d(Conform) as
shown in Table 1.

Table 1: Conformational state space dimension d(Conform) for four taxonomic groups of
prokaryotes estimated using 103 bits per protein [60] and proteins/cell interpolated by cell
volume from exemplars given in [52] Table 1. Localization state space dimension d(Local)
estimated using a typical protein geometric volume of 50,000 Å3 = 5 · 10−26 m3 [54] and
cell volumes estimated using 1 gm/ml from mass data given in [62] Table 1. Mean power
consumption from [62] Table 1 converted to bits/s using 1 bit ≡def 3 · 10−21 J. Maximum
computation rates fmax are for fully-classical computation on the total protein state space.

Proteobacteria Cyanobacteria Firmicutes Archaea
d(Conform) 2.6 ·109 4.2 ·1010 3.5 ·108 3.5 ·108

d(Local) 3.6 ·107 5.6 ·108 7.0 ·106 6.0 ·106

d(Protein) 9.4 ·1016 2.3 ·1019 2.4 ·1015 2.1 ·1015

Power (fW) 20 84 2.8 4.2
Power (Mbits/s) 6.7 28 0.93 1.4
fmax (Hz) 7.1 ·10−11 1.2 ·10−12 3.9 ·10−10 6.7 ·10−10

The dimensionality d(Local) of the localization component of P can be estimated from
per-cell volume given an average protein volume of 50,000 Å3 [54] as employed above.
These estimates effectively assume that all proteins are cytosolic; as membrane-bound or
other compartmentalized proteins must be actively transported to their functional loca-
tions, this is not an unreasonable assumption from a bioenergetic perspective. Mean values

14



for prokaryotes are given in Table 1; d(Local) is roughly two orders of magnitude below
d(Conform) across taxonomic groups.

The total dimension d(Protein) is computed assuming that conformation and localization
are independent. This is again an approximation, particularly for membrane-bound pro-
teins. As seen below, however, even decreasing values of d(Protein) by an order of magnitude
to account for non-independence would have no qualitative effect.

Tables 2 and 3 summarize values for d(Conform), d(Local), and d(Protein) for a representa-
tive unicellular eukaryotes [63] and for average adult human [64] and adult human cerebellar
and cortical neurons [65], respectively. Protein state space dimensions for eukaryotic cells
are considerably higher than for prokaryotes, largely due to increased cell volume. Values
for neurons are for total neuronal complement within anatomical compartments, and hence
average over very large Purkinje and canonical cortical neurons and much smaller granular
cells, astrocytes, etc.

Table 2: State space dimensions for four representative unicellular eukaryotes calculated as
in Table 1, except cell volume data from [63]. Mean power consumption from [63] Table 1
converted to bits/s using 1 bit ≡def 3 · 10−21 J. Maximum classical computation rates fmax

calculated as in Table 1.

Ochromonas Euglena Bresslaua Amoeba
d(Conform) 1.5 ·1011 7.0 ·1012 3.3 ·1013 1015

d(Local) 5 ·109 1.4 ·1011 6.6 ·1011 2.0 ·1013

d(Protein) 7.5 ·1020 9.8 ·1023 2.2 ·1025 2.0 ·1028

Power (pW) 22.5 210 1,650 10,000
Power (Gbits/s) 7.5 70 550 3,300
fmax (Hz) 10−11 7.1 ·10−14 2.5 ·10−14 1.6 ·10−16

Table 3: State space dimensions for average adult human cells from [64], and adult human
cerebellar and cortical neurons from [65]. Mean power consumption converted to bits/s
using 1 bit ≡def 3 · 10−21 J; maximum classical computation rates fmax calculated as in
Table 1.

Average Human Cerebellar Cortical
d(Conform) 2 ·1012 2 ·1012 2 ·1012

d(Local) 8 ·1010 8 ·1010 8 ·1010

d(Protein) 1.6 ·1023 1.6 ·1023 1.6 ·1023

Power (pW) 1.5 42 750
Power (Gbits/s) 0.5 14 250
fmax (Hz) 3.1 ·10−15 8.8 ·10−14 1.5 ·10−12
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Considering only protein conformation and localization clearly underestimates the dimen-
sionality of the state space relevant to cellular information processing. Highly localized
concentration gradients of Ca2+ and other ions, cofactors such as adenosine and guanine
triphosphate (ATP and GTP), and other small molecules also play significant roles in regu-
lating cellular state [66, 67, 68], as does localized bioelectric state [69]. Both the topological
conformation and base-by-base inter-strand interaction states of nucleic acids are also sig-
nificant, although typically on slower timescales [70, 71]. Hence using protein conformation
and localization states to estimate the energetic cost of classical computation provides a
lower limit only; more realistic values may be several orders of magnitude higher.

5 Cellular energy budgets cannot support molecular-

scale classical computation

Classical computation requires updating a classical state, i.e. an N -bit string, on each
computational clock cycle, independently of how many bits in the string change their values
on each cycle. Computation at a clock frequency f incurs a minimal unit-time energetic
cost (i.e. power consumption) of Nf ln2kBT [19]. Computing with 32 GB at a clock speed
of 2.3 GHz at T = 310 K, for example, has a minimal cost of ≈ 1.7 W, roughly 80% of the
thermal design power of a commercial microprocessor with these specifications [72]. In the
current setting, in which irreversibility and hence effective classicality is due to decoherence
(via environmental interactions or collapse), the “clock cycle” is the period λdec between
decoherence events. To compute cellular-scale power usage, we assume λdec ∼ ∆tdec as in
§3.2 above. For simplicity, we will abuse notation slightly to define “1 bit” of energy as
ln2kBT ≈ 3·10−21 J at T = 310 K, with a corresponding power unit of bits/s. We emphasize
that ln2kBT is a minimal estimate that applies to all classical state changes regardless of
their functional consequences. Biochemical “bit flips” with functional consequences at the
cellular scale typically require ATP or GTP hydrolysis to guarantee irreversibility and hence
expend on the order of 10 kBT ; see e.g. [16, 73] for discussion of molecular computations
implemented by these higher-energy processes and [74] for a model of hydrolysis as an
extended, entanglement-generating process.

Tables 1, 2, and 3 summarize mean per-cell power consumption measurements for repre-
sentative prokaryotes [62], unicellular eukaryotes [63], and average adult human cells [64]
and adult human cerebellar and cortical neurons [65], respectively. On average, eukaryotes
consume three or more orders of magnitude more power per cell than prokaryotes, a dif-
ference attributable to both larger size and the availability of mitochondria specialized for
respiration [75]. Neurons, particularly cortical neurons, consume considerably more energy
than average human cells, consistent with the brain’s use of roughly 20% of the whole-body
energy budget in humans [76]. This energy consumption is split between signalling activity
and state maintenance [77, 78]. Significantly, the entire energy budget of a large cortical
neuron has been estimated to be consumed by action-potential generation and recovery
[79].
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As tables 1, 2, and 3 indicate, cellular power consumption falls far short of that required to
maintain a fully-classical, i.e. fully-decoherent state at the fs scale of molecular dynamics
calculations or even the µs scale of protein domain motions. Indeed the maximum classical
computation rate fmax achievable with the given power consumption falls short of 1 Hz by
roughly 1010 for prokaryotes and small eukaryotic cells up to roughly 1015 for larger eukary-
otic cells. Even altogether ignoring protein localization, none of the cell types examined can
support fully classical encoding of protein conformational state at 1 Hz. We conclude that
neither prokaryotes nor eukaryotes have the metabolic resources to support fully-classical
information processing at the molecular scale. Requiring classical computation rates in the
kHz range of typical inter- and intra-cellular signaling processes restricts encoded classical
states, and hence decoherence, to components spanning only 10−13 to 10−19 of the avail-
able protein state space. The remaining components of the state space cannot undergo
decoherence at kHz frequencies with the available metabolic resources.

6 Cell-level decoherence implemented by classical en-

coding on intercompartmental boundaries

The most straightforward interpretation of tables 1, 2, and 3 is that intracellular decoher-
ence (or “measurement”) occurs not at the attosecond to fs time scales of molecular-scale
fluctuations, but rather at the µs to ms time scales of intercompartmental or intercellular
information exchange. Assuming for simplicity that intercompartmental or intercellular in-
formation exchange in eukaryotes is mediated by transmembrane proteins, we can estimate
the required classical-information encoding densities from transmembrane protein densities.
The density of tyrosine kinase receptors is roughly 550 per µm2 on human HeLa cells and
1300 per µm2 on CCRF-CEM cells [80]. Assuming ≈ 10 pS conductance per channel [81],
cortical neurons have between 5 (dendrites) and 250 (axon initial segment) Na+ channels
per µm2 [82]. Retinal rod cells can have on the order of 25,000 rhodopsin molecules per
µm2 in their layered outer-segment membranes [83]. Hence it seems reasonable to estimate
on the order of 105 to 106 transmembrane proteins on the outer cell membrane of a typical
human cell, with comparable densities on other eukaryotic cells. In the simplest model,
each such protein encodes 1 bit per computational cycle.

Assuming spherical cells and power consumption from Tables 1, 2, and 3, the maximum
numbers of bits that can be processed at 1 kH by typical prokaryotic and eukaryotic cells
are shown as a function of surface area in Fig. 2. The data can be reproduced with a
power law, bits(1 kH) = 100 + A2.25, A the cell-surface area. Hence while the range for
human cells (green) is consistent with the estimates above, processing power grows at a
rate faster than linear in either external surface area (∼ A) or volume (∼ A1.5), i.e. faster
than expected for allometric scaling, suggesting that classical information is also encoded
at high densities on intercompartmental boundaries.
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Figure 3: Maximum bits processed at 1 kH as a function of surface area, assuming spherical
cells and power consumption from Tables 1, 2, and 3. Solid line is the power law: bits(1
kH) = 100 + A2.25, A cell-surface area, assuming a spherical cell.

Decoherence and hence classical encoding only at intercompartmental or intercellular bound-
aries is consistent with a model of bulk cellular compartments as weakly-interacting quan-
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tum systems occupying separable joint states. Here a “compartment” is simply a component
that maintains an independently-definable quantum state over some time period of inter-
est; a bounding membrane may be present but is not required. Under these conditions, the
inter-compartment interactions can be viewed as einselecting [30, 84] a computational basis
and holographically encoding eigenvalues in this basis on the inter-compartment boundary
[37, 38, 39]. Labelling the compartments A and B and assuming standard quantum theory
without physical collapse, we can write the interaction as:

HAB = βkkBT
k

N∑
i

αk
iM

k
i , (6)

where k = A or B, the Mk
i are N Hermitian operators with eigenvalues in {−1, 1},

the αk
i ∈ [0, 1] are such that

∑N
i α

k
i = 1, and βk ≥ ln 2 is an inverse measure of k’s

thermodynamic efficiency that depends on the internal dynamics Hk. At each time step, A
and B exchange N bits of classical information specifying the current eigenvalue of HAB,
entirely independently of the bulk internal dynamics HA and HB. These N -bit encodings
constitute the only decoherent, classical information in the system. This representation
of decoherence as holographic encoding is completely general, requiring none of the semi-
classical assumptions of single-molecule scale models discussed in §3. The energetic cost
of computation is, in this case, only the energetic cost of classical encoding N bits on the
boundary; all information processing in each bulk compartment is unitary, implemented by
the propagators exp(−i/~)Hkt and hence energetically free.

7 Prediction: Entanglement between daughter cells

A model in which decoherence is localized to intercompartmental boundaries suggests a
strong and potentially testable prediction: that internal, bulk states of daughter cells may
remain entangled for macroscopic times following cell division. While long-lasting mirror
symmetry of cytoskeletal components and hence motion patterns as well as cell-cycle corre-
lation of sister cells has been observed [85] and numerous examples of epigenetic inheritance
[86, 87], including epigenetic inheritance of organism-scale bioeletric state [88, 89] are now
known, Bell-type experiments that directly test for state entanglement in recently-separated
sister cells have not, to our knowledge, yet been performed. If coherence is preserved as the
above analysis suggests, perturbations of bulk biochemical state, e.g. targeting intermedi-
ate components of signal transduction pathways, in one daughter cell may be expected to
affect the behavior of the other, biochemically and bioelectrically isolated, daughter cell. If
observed correlations between the responses of mutually-isolated systems to perturbations
of one of the systems violate Bell-type inequalities [90, 91], they cannot be explained by a
priori classical correlation and hence provide evidence for quantum coherence. In principle,
any effectively binary valued perturbations and responses can be used in such tests; in
the present context, minimally-invasive probes such as ligand binding and responses such
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differential gene expression may be good candidates. Such correlations may also be observ-
able as Kochen-Specker contextuality [92, 93] or Leggett-Garg inequality [94] violations in
time-series data. Recent reports of Kochen-Specker contextuality, after correction for sig-
nalling, in human decision making [95, 96] support the feasibility of detecting such effects
with appropriately-designed experiments.

8 Conclusion

Consistent with single-molecule decoherence models, cellular biochemistry is standardly
represented as classical at the Å, fs scale of molecular dynamics calculations. We have shown
here that cellular energy budgets cannot support bulk classicality at this scale. Observed
cellular energy budgets can support classical information processing at kHz rates in only
10−13 to 10−19 of the available protein state space; outside of this restricted domain, cellular
information processing must be considered quantum. We suggest that biochemistry can
only be treated as fully-classical at or near either the cell membrane or intercompartmental
boundaries within the cell. We predict on this basis that bulk-state entanglement may
be observable between recently-separated sister cells. Experimental confirmation of the
availability of large-scale quantum coherence as a computational resource of cells would
have immediate effects on considerations of the computational complexity and feasibility of
algorithmic models of cellular information processing, e.g. of hierarchical Bayesian inference
[97], as these become increasingly well developed.

While we have focused here on the measured energy budgets of extant cells, it is tempting
to speculate that exceeding the limits imposed by classical thermodynamics is central, and
perhaps definitional, to life as a phenomenon. Searching for quantum effects in minimal,
self-organizing biochemical systems [98, 99] may shed light on this possibility.
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à la Wilczek. Front. Astron. Space Sci. 8: 563450. (doi: 10.3389/fspas.2021.563450)

[40] Shannon C. 1948 A mathematical theory of communication. Bell Syst. Tech. J. 27:
379–423. (doi: 10.1002/j.1538-7305.1948.tb01338.x)

[41] Wooters WK, Zurek WH. 1982 A single quantum cannot be cloned. Nature 299:
802–803. (doi:10.1038/299802a0)

[42] De La Fuente IM, Cortes JM, Perez-Pinilla MB, Ruiz-Rodriguez V, Veguillas J.
2011 The metabolic core and catalytic switches are fundamental elements in the
self-regulation of the systemic metabolic structure of cells. PLoS ONE 6: e27224.
(doi: 10.1371/journal.pone.0027224)

[43] Kerr R, Jabbari S, Johnston IG. 2019 Intracellular energy variability modulates cel-
lular decision-making capacity Nature Sci. Rep. 9: 20196 (doi: 10.1038/s41598-019-
56587-5)

23



[44] Schrödinger E. 1983 The present situation in quantum mechanics. In Quantum Theory
and Measurement. (eds JA Wheeler, WH Zurek), pp. 152–167. Princeton, NJ, USA:
Princeton University Press. Originally published in Naturwissenshaften 23, 1935.

[45] Lloyd S. 2000 Ultimate physical limits to computation. Nature 406: 1047–1054. (doi:
10.1038/35023282)

[46] Hawking SW. 1978 Spacetime foam. Nucl. Phys. B 144: 349–362. (doi:10.1016/0550-
3213(78)90375-9)

[47] Von Neumann J. 1955 Mathematical Foundations of Quantum Mechanics. Princeton,
NJ, USA: Princeton University Press. Originally published in German by Springer,
1932.

[48] Bassi A, Lochan K, Satin S, Singh TJ, Ulbricht H. 2013 Models of wave-function
collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85: 471–527.
(doi: 10.1103/RevModPhys.85.471)

[49] Adler SL. 2007 Lower and upper bounds on CSL parameters from latent image forma-
tion and IGM heating. J. Phys. A: Math. Theor. 40: 2935–2957. (doi: 10.1088/1751-
8113/40/12/s03)
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