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Abstract

Smith and Brogaard (‘A unified theory of truth and reference’ Logique et Analyse
43 (2000) 49-93) proposed a resolution of the problem of referential ambiguity based
on the use of mereotopological partitions. It is shown that this proposed resolution
is circular if viewed ontologically and intractable if viewed epistemologically.
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1 Introduction

Quine (1960, 1969) can be interpreted as holding that nothing connects a word to an
object beyond the speaker’s assumption - shared one hopes by at least some listeners - that
the word can be understood to refer to that object. Smith and Brogaard (2000) propose
to do better than this, even in the presence of referential vagueness, by appealing to the
mereotopological notion of a partition that “recognizes” not just a particular singular object
John but “all of the aggregates f; that are almost identical to John” (p. 79; emphasis in
original). This sense of recognition is formalized in terms of the “location” of an object z
within a partition A:

v € A =4y 32(La(x,2)), (1)



where z € A indicates “x is recognized by A” and L,4(z, z) indicates “x is located in cell z of
A.” Smith and Brogaard consider objects to be bona fide real, objective entities' that exist
“independently of any acts of human fiat and independently of our efforts to understand
(them) theoretically” while partitions and the cells that they comprise are “artefact(s) of
our judging, classifying, theorizing, or mapping activity” (p. 74); they claim, however, that
“once a given partition exists, it is ... an objective matter whether or not that object is
located in that cell” (p. 76). Recognition of an object by a partition, therefore, resolves
the “mystery of reference” objectively for Smith and Brogaard.

I show here that any objective reading of the notion of recognizing an object with a parti-
tion is either circular or intractable. Briefly, the notion is circular if viewed ontologically,
as the definition (1) of recognition implicitly assumes that the stipulated “fiat” partition A
corresponds exactly to the objective mereotopology of the “aggregates” f; that are to be
recognized; A therefore accomplishes nothing not already done by the assumed objective
mereotopology. The notion is intractable if viewed epistemologically, as the finite but arbi-
trary number of the f; render it impossible to determine using finite means whether (1) is
satisfied for a given object and a given partition. The idea of a “consistent history” of parti-
tions that Smith and Brogaard (2002) develop to account for the possibility of consistently
referring to an object that endures through time depends on the notion of recognition and
is, therefore, also either circular or intractable. As Smith and Brogaard adapt this idea
of a consistent history from its application to the interpretation of quantum mechanics?,
I comment briefly on an explicitly quantum-mechanical formulation of recognition with a
partition, and show that this formulation, like that of Smith and Brogaard, in fact provides
no advance over the Quinean position that shared terms must simply be assumed to refer
to their target objects.

2 Partitions as truthmakers

Smith and Brogaard introduce partitions into natural-language semantics in order to cope
with the well-known problem of referential vagueness: a term such as “Mont Blanc” can
refer to many different circumscriptions of the world, some of which contain the rabbits
living on the slopes of the famous mountain, while others do not. Uses of the term “Mont
Blanc” all, however, occur in particular contexts that render relevant different aspects

!Smith and Brogaard (2000) give Quine his due by allowing that reality may be “intrinsically undiffer-
entiated as far as metaphysical distinctions and categories are concerned” (p. 87). However, they appeal
to “bona fide boundaries and relations in reality” (p. 90) and use terms like “Mont Blanc” and “rabbits”
throughout with the assumption that such things have real boundaries that objectively differentiate them
from the other furniture of the universe. Smith and Brogaard (2002) and Grenon and Smith (2008) include
explicit statements of the common-sense realism about ordinary objects that is implicit throughout Smith
and Brogaard (2000).

2Smith and Brogaard (2000) cite the “Consistent Histories” interpretation of Omnes (1994) as an inspi-
ration for their notion of an object’s “location” within a cell; Smith and Brogaard (2002) provide a more
explicit review of the origin of their idea of a “history” in the quantum mechanics literature. See Griffiths
(2011) for a recent exposition of this approach within quantum theory.



of these various circumscriptions; the resident rabbits are irrelevant when Mont Blanc is
pointed out from afar, but are relevant if its ecology is being discussed. Whether the
rabbits are relevant depends on the granularity of the context: its demand for details, and
its concommittant provision of the opportunities and technologies needed to observe the
demanded details®. Partitions control granularity by enforcing a finite limit on the size or
scope of each cell; only the objects that are recognized as being in a cell z of a partition A by
the relevant location function L4 need be considered when evaluating the truth of sentences
referring to the object(s) in z. A partition that only recognizes mountain-sized things, for
example, will recognize Mont Blanc, but will not recognize the rabbits whether they are
resident on the mountain or not. Associating a partition with a context of discourse blocks
mereotopological regresses and hence blocks inferences such as:

John sees Mont Blanc.
Mont Blanc includes numerous rabbits.

.. John sees numerous rabbits.

Hence while reality, even from the perspective defined by a given context, does not make
all intuitively true sentences true and false sentences false, reality plus a contextually-
appropriate partition does. By limiting the scope of discourse in any given context, parti-
tions become truthmaking overlays on reality.

Thrusting partitions into the role of truthmakers clearly raises two questions. The first is
ontological: even if we acknowledge that they are fiat entities created for the purpose by
us, do the “right” partitions to do the job of truthmaking exist? The second question is
epistemological: is it possible, in a given context, to know that a given partition will do the
needed truthmaking job? Smith and Brogaard allow that in some cases the right partitions
to support truthmaking have not been and perhaps cannot be constructed; they note, for
example, that as no partition of the waters of Lake Constance between the neighboring
countries of Germany, Austria and Switzerland has been officially specified, legal claims
about the ownership of particular, bounded volumes of Lake Constance water have no
truthmaker. The explanatory project undertaken by Smith and Brogaard is, however,
based on the assumption that in many if not most contexts, an appropriate partition can
be either found or stipulated to serve as a truthmaker, as an appropriate international
agreement would in fact serve in the case of ownership claims about the waters of Lake
Constance. If it is “an objective matter” whether such a proferred partition provides a
truthmaker in its intended context, then this is an assumption that fiat can, at least in
many if not most contexts, be matched with physics, that is, with the actual mereotopology
of the real world. For Smith and Brogaard, this matching of fiat to physics is the goal of
science: “Elite things and classes are in our terms the things and classes captured by those

3Smith and Brogaard (2000) introduce granularity as a spatial concept; however, they employ it as a
general term for distinguishing larger from smaller scopings of relevant facts independently of the dimensions
along which “scope” is defined.



partitions which track bona fide boundaries and relations in reality. It is the job of science to
move us in the direction of partitions of this sort” (2000, p. 90). The “bona fide boundaries
and relations in reality” can be taken to define the actual mereotopology of the real world, a
mereotopology yet to be discovered, but perhaps at least approximated by current science.
The “elite things” are in this case also yet to be discovered, but are perhaps approximated
by microscopic entities such as molecules, atoms or elementary particles.

Addressing the ontological question requires returning to the problem that partitions are
meant to resolve, the problem of ambiguous reference. In the actual mereology of the
real world, the macroscopic objects of ordinary experience are complex entities comprising
vast numbers of parts: hunks of ice and rock in the case of Mont Blanc, living cells in
the case of the rabbits, and assuming that current science does provide an approximate
accounting of the “elite things,” molecules, atoms and elementary particles in the case of all
material objects. Taking the boundaries of such macroscopic objects of ordinary experience
into account extends this actual mereology of parts to an actual mereotopology*. Under
ordinary circumstances, reference is ambiguous because a precise accounting of parts -
especially microscopic parts - and boundaries is neither demanded nor made; context shifts
are significant because they can introduce both requirements to account for parts and
boundaries and technologies that enable doing so. To employ an example of Smith and
Brogaard’s, whether a water glass is empty has a different answer for a pathologist with a
microscope than it has for someone who has just drained it of water. A typical, macroscopic
enduring object of reference x, then, is not a simple, but is rather a bounded aggregate of
parts at various scales, currently definable, at least in principle, down to the scale of atoms
or even Standard Model elementary particles.

Smith and Brogaard trace the ambiguity of reference to the fact that a typical, macroscopic
enduring object of reference x is not identical at all times to a single, specific aggregate
of parts fi, but is rather identical, if quantum-mechanical effects are ignored, to different
aggregates fi, fa, ..., f, from moment to moment as ice forms and evaporates, cells are born
and die, and atoms drift off and are re-captured. These various aggregates f; are all mutually
“almost identical” and all equally referenceable by the term ‘z’; ‘John’ refers to John, for
example, regardless of the details of John’s physical composition at the molecular scale,
details which change with every breath. Collecting the aggregates that are almost identical
to z into some single cell z of a partition A allows ‘x’ to refer to whatever is recognized as
contained within z; the small differences between the aggregates are sequestered in z and
can safely be ignored. If the partition A is to recognize x as a well-defined and enduring
object of reference, it clearly must recognize within the same cell z all of the aggregates
fi that are from time to time almost identical to x as Smith and Brogaard require; the
collection {f;} must, as Grenon and Smith (2008) require explicitly, be an equivalence class
for La(z,2).

Capturing all of the almost identical aggregates f; in a single cell 2 is, however, insufficient
to assure the fidelity of reference. As noted above, the partitions of interest are stipulated

4Ontologies can be constructed in which such part-hood relations and boundaries are discounted; that
of Cartwright (1999) is a case in point.



by fiat, but whether a given object is a contained within a given cell is not a matter of
stipulation, but rather an objective matter of fact. A cell z large enough to contain all
of the aggregates f; that are almost identical to x may, as an objective matter of fact,
also contain some aggregate g that is not almost identical to x. For example, a cell large
enough to contain all the aggregates almost identical to Mont Blanc may also contain some
aggregates almost identical to rabbits. In such a case, if A is to serve as a referentially-
transparent truthmaker for judgments regarding x, the recognition relation L, must be
such that L4(z, z) but =L4(g, z), i.e. it must be the case that A recognizes x as being in
z but does not recognize g as being in z. If A is to serve as a truthmaker, in other words,
the definition (1) of recognition leaves unstated an important restriction on L 4. Explicitly
ruling out the recognition of unwanted g’s requires the stronger definition:

x € A=gep F2(La(x,2) NVy oz, (y ¢ AV ~La(y, 2))), (2)

where ‘y ~ 2’ indicates that y is not “almost identical to” x in the sense employed by
Smith and Brogaard. Unlike (1), this stronger definition forces whatever is recognized by
the partition A as being in the cell z to actually be (almost) identical to x; hence ‘@’ can
safely be taken to refer to whatever is recognized as being in z. Hence if the resident
rabbits are not as an objective matter of fact given the “bona fide boundaries and relations
in reality” - as indeed Smith and Brogaard claim they are not - part of Mont Blanc, any
partition that recognizes the rabbits must put them in a different cell from Mont Blanc.

It is this requirement that completeness be combined with exclusivity that renders prob-
lematic the notion that a fiat partition can be an objectively correct truthmaker. Consider,
for example, a partition z that contains all the aggregates almost identical to John, but also
contains a proper subaggregate g almost identical to John’s right thumb. The intuition that
‘John’ refers to John but not to John’s right thumb can be preserved by defining L4(x, 2)
as non-distributative over g, i.e. as such that:

(La(z,2) Ng < x) = —Lal(g, 2), (3)

where ‘<’ indicates proper mereological containment (cf. Smith and Brogaard (2000) p.
78-79). It is tempting to generalize (3) to rule out recognition of all proper subaggregates,
i.e. to require:

Vy(La(z,2) Ny < x) = = La(y, 2). (4)

It is clear, however, that (4) is too strong. John without a hair is still John; indeed John
without his right thumb is still John®. Similarly, Mont Blanc without a particular block of
ice is still Mont Blanc. These are, moreover, for Smith and Brogaard matters of fact about
the “bona fide boundaries and relations in reality,” i.e. about the actual mereotopology of
the real world. Hence the application of (4) must be limited to proper subaggregates y that

®These claims about identity over time for persons are taken to be non-controversial; see Scholl (2007)
or Nichols and Bruno (2010) for recent discussions.



are not as a matter of fact almost identical to x and hence themselves members of the set
{fi} of aggregates that the cell z is designed to isolate.

One can now ask, what partitions A guarantee that (2) holds for all y = x, given that (4)
cannot be applied to rule out proper subaggregates across the board? One partition clearly
satisfies this requirement: the “natural” partition N that exactly captures the “bona fide
boundaries and relations in reality” and hence corresponds exactly to the actual mereotopol-
ogy of the real world. The natural partition “carves nature at its joints” at every level of
granularity; if g ¢ {f;} and hence is not almost identical to = as a matter of fact, N either
puts g in a different cell than x, or does not recognize g at all. The natural partition is,
moreover, the only partition with this property; if some partition A satisfies (2) at some
fixed level of granularity for every object x and for every aggregate g that is never as a
matter of fact almost identical to that x, then A = N at the chosen level of granularity.

A fiat partition A # N can be arbitrarily close to N but still fail as a truthmaker due to
referential ambiguity. Suppose, for example, that A # N is a partition that successfully
locates in a cell z all members of the set {f;} of aggregates that are as a matter of fact
almost identical to Mont Blanc, but that A also locates in z an aggregate g ¢ {f;} such
that g = fr ® ¢, where fi € {f;} and ( is a nearby cubic centimeter of air. Provided that it
is a matter of fact that the set {f;} contains all of the aggregates that are almost identical
to Mont Blanc - provided, in other words, that there really are “bona fide boundaries and
relations in reality” and hence that the natural partition N exists - such a g must also
exist. To claim otherwise is to claim that all elements f; within {f;} are such that no ¢
can be found for which the mereological sum g = fr @ ¢ can be constructed; Mont Blanc
is large, but surely it is not mereologically maximal in this way. Because the chosen ( is
small, the constructed ¢ exists at the same level of granularity as any of the f;, and because
La(g,z), g € A by definition; hence (2) fails for A. The partition A looks like a truthmaker
for sentences such as “that over there is Mont Blanc” - who cares about an extra cubic
centimeter of air - but it is not: at least one of the objects, ¢g that it recognizes as being
within z and hence allows as a referent of ‘that’ is as a matter of fact never almost identical
to Mont Blanc. Any number of entities such as g can be constructed; hence the partition
A fails due to potentially arbitrary referential ambiguity.

The object ¢ in the above example is clearly an artificial construction, but it serves to
illustrate the fundamental problem with (2) as a criterion. The point of introducing fiat
partitions is to resolve problems with referential ambiguity independently of N; scientific
investigation of the world is not complete, so N is as a matter of fact unknown. The re-
quirement that the second clause of (2) holds “Vy ~ z,” however, introduces an implicit
dependence on N; as the example shows, whether some proferred y is ever almost identical
to some given x is a question about what parts are included as a matter of fact in what
aggregates, and such questions can only be answered by appeal to N. This implicit depen-
dence on N turns (2) into a circularity: the fiat partition A does no work in (2) that is
not already accomplished by N. The natural partition is, however, not established by fiat;
it is established by the laws of nature. Once appeal is made to (2) to specify what each
cell of a truthmaking partition must recognize, the entire apparatus of fiat partitions as



truthmakers is rendered redundant. If NV is available, then reality itself is the truthmaker.
If N is not available - as it presently is not - then except in cases such as the ownership of
Lake Constance where there is no natural fact of the matter, the potential for referential
ambiguity is unavoidable.

The above argument turns, clearly, on Smith and Brogaard’s insistence that whether two
things are “almost identical” is a matter of objective fact. By capturing the “bona fide
boundaries and relations in reality,” the assumed natural partition N captures such matters
of objective fact. What has been shown here is that if this notion of “almost identity”
is objective, it cannot be captured by a fiat partition A unless A is, again as a matter of
objective fact, identical to V. Unless by lucky chance A = N, two things may seem “almost
identical” to us, using A, without them being “almost identical” in fact, i.e. according to
N. There is, moreover, no way for us to determine whether what seems “almost identical”
actually is “almost identical”; we have no way to demonstrate that A = N. This is shown
in the next section.

3 Identifying a truthmaking partition

Let us set aside the question of whether N exists - Smith and Brogaard clearly assume
that it does - and suppose that some partition A has been put forward as a truthmaker
for judgments about x in some context. Is it possible to determine whether A is in fact a
truthmaker for such judgments in that context, i.e. is it possible to determine the “objective
matter (of) whether or not that object is located in that cell” of A? From the reasoning
above, this is clearly the question of whether it is possible to determine whether some cell
z of A contains all of the f; corresponding to the object of reference x and contains no
non-z’s that are recognized by A.

)

If one thinks of A as a “theory” of x, then the question above becomes the question of
empirical theory confirmation, a question with a well-known negative answer. This can
be made precise as follows. Consider a finite sequence of non-destructive observations of
r made at times t;, for simplicity keeping the context and means of observation fixed.
Neglecting quantum-mechanical effects as above, x can be considered to be identical to
some f; at t, in which case x can be considered to be a classical finite state machine that
executes state transitions ...f; — f; — fi... in the intervals between the observation times
tiytj,t1...%. Theorem 2 of Moore (1956) shows that no finite sequence of observations of a
classical finite state machine suffices to establish the identity of the machine, i.e. no finite
sequence of observations suffices to fully specify the complete “machine table” of possible
states and state transitions that defines the possible behaviors of the machine. Moore’s
proof of this theorem is disarmingly simple: for any machine table derived from a finite
sequence of observations of x, Moore produces a larger machine table that includes all of the
observed states and transitions, but also includes states and hence transitions that could

6For definitions and examples see Ashby (1956) or Hopcroft and Ullman (1979). Ashby (1956) proves a
result essentially identical to Moore’s. Fields (2013a) extends this result to the quantum-mechanical case.
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be, but so far have not been observed. Moore’s theorem thus demonstrates that no finite
sequence of non-destructive observations is sufficient to put an upper limit on the potential
behavioral complexity of a physical device, a result with which software debuggers and
reverse engineers are all too familiar.

In the case of ordinary, macroscopic objects of reference, “state transitions” are just the in-
evitable transitions in identity from one aggregate of microscopic parts to another. Moore’s
theorem shows that no finite sequence of observations of x is sufficient to determine the
number of distinct aggregates f; to which z may be from time to time identical; hence no
finite sequence of observations of x is sufficient to determine whether any specified cell z of
a partition A captures the entire set {f;} of almost identical aggregates to which x may be
from time to time identical. Clearly it is similarly impossible to establish with a finite se-
quence of observations that a given cell z captures nothing but the f;. Partitions are in this
sense like theories: their sufficiency as truthmakers cannot be demonstrated empirically.

4 Consistent histories

Intuitively, the sequence of particular aggregates f; to which an object of reference x can
be regarded as identical at a sequence of observation times t; corresponds to a “history”
of x at the granularity of the ¢;. Smith and Brogaard (2002) formalize this intuition using
changes in spatial location as a metaphor for changes in observation context or in the values
returned by some ancillary measurement carried out on = at each of the ¢;. They consider
a partition A with cells corresponding to locations (in their motivating example, airports),
observation contexts or measurement outcomes, and define a history of x as a sequence
of cells of A indexed by time, and hence a sequence of propositions L;(z, z;) where the
index ¢ ranges over observation times (Smith and Brogaard (2002); p. 4). As z is, as an
objective matter of fact described by NV, identical to some aggregate f; at every t;, this
definition adds to the intuition above only the extra “dimensions” of location, context,
or measurement outcome. A history is consistent if its component sentences L;(z, z;) are
all mutually consistent. Consistency obtains on this model, clearly, whenever x avoids
occupying two distinct cells at the same time.

Smith and Brogaard introduce consistent histories in order to provide an “extension of the
mereotopological ontology to deal with change and becoming” (Smith and Brogaard (2002)
p. 8) that treats macroscopic objects as enduring aggregate entities and maintains the
intuitive, qualitative distinction between space and time. While their account of partitions
as truthmakers does not explicitly rely on this notion of historical consistency, by treating
objects such as Mont Blanc or its rabbits and actions such as John kissing Mary in a
straightforward, ordinary-language way it does so implicitly. The notion of a consistent
history depends, conversely, on the ability of partitions to function as truthmakers, i.e. on
the ability of ‘L;(x, 2;)’ to fully and unambiguously capture z within z; at ¢;. By basing
both on the ability to recognize an object with a partition, Smith and Brogaard render a
straightforward ontology of enduring bounded objects and a straightforward semantics of



true sentences referring to such objects co-dependent.

The ontological and epistemological arguments rehearsed above apply, mutatis mutandis,
to the concept of a consistent history. The ontological argument shows that this concept
is circular: the only history that assures consistency is a history generated by extending N
to encompass not only all objects but all locations, contexts and measurements within an
assumed actual mereotopology of the real world. Only this history assures that z, in its
many manifestations as particular aggregates, never occupies two locations simultaneously,
and only this history assures that distinct objects  and y never occupy the same location. If
this N-based history is assumed, however, the construction of further histories is pointless;
any fiat history based on a fiat partition A does only some of the work of the N-based
history, and does it only as a mereotopological approximation. Such approximations are
clearly valuable as practical science, but they cut no ice as ontology. The epistemological
argument simply reinforces this point, by showing that the consistency of a proferred fiat
history based on a fiat partition A can never be empirically demonstrated.

5 A note on quantum-mechanical partitions

The foregoing has explicitly neglected quantum-mechanical effects; the assumption that an
observed system x can be regarded as identical at t; to a particular aggregate f; of ele-
mentary parts is, in particular, inconsistent with the superposition principle of quantum
mechanics, which requires that any linear combination of states of x is itself a state x7.
Smith and Brogaard (2002) borrow the formal notion of a consistent history from quan-
tum mechanics; they title their paper ‘Quantum mereotopology’. The point of consistent
histories within quantum mechanics is to provide an “interpretation” of the formalism that
solves the problem of the “emergence” of a classical world of well-defined objects that can
be observed in well-defined states®. Might a purely quantum-mechanical process provide
the underlying ontological basis for N, and hence for a theoretical solution to the problems
outlined above?

In quantum mechanics, a consistent history is a sequence of mutually-commuting measure-
ments to which a well-defined probability can be assigned?. Measurements are operators
defined on the Hilbert space of a quantum system; traditionally measurements were taken
to correspond to orthonormal sets of projection operators, one associated with each distinct
possible outcome, while more recently the orthogonality requirement has been dropped and

"The superposition principle motivates the choice of vectors in Hilbert space as the mathemati-
cal representation of physical states and is typically considered as axiomatic in quantum mechanics.
See http : //en.wikipedia.org/wiki/Quantum_mechanics or for a briefer, more axiomatic introduction
http : //plato.stanford.edu/entries/qm/.

8The traditional “measurement problem” is a special case of the general problem of the emergence of
classicality in a fundamentally quantum world. Schlosshauer (2007) provides a textbook-length introduc-
tion; Landsman (2007) or Wallace (2008) are good general reviews.

9GSee Griffiths (2002) Ch. 10, Griffiths (2011) or relevant references in Smith and Brogaard (2002).



any positive operator-valued measure (POVM), i.e. any normalized set of positive semi-
definite operators on the Hilbert space, where again each operator is associated with an
outcome, is regarded as a measurement!’. A consistent history of a system z as it evolves
through time can, then, be thought of as a sequence of outcomes, each associated with
some time t;, of operations with components of some POVM on the Hilbert space of x.
Defining such a sequence clearly requires specifying the Hilbert space of x, i.e. it requires
specifying a partition that distinguishes the degrees of freedom of x from the degrees of
freedom of the rest of the universe. A consistent history in quantum mechanics thus requires
a quantum-mechanical partition of (universal) Hilbert space, just as a classical consistent
history requires N.

Quantum mechanical systems can be isolated, and hence partitioned from the rest of the
universe, “for all practical purposes” in the laboratory. Ontologically isolating a quantum
system, however, involves violating the superposition principle as applied to the quan-
tum state of the universe as a whole'!. Griffiths (2011) avoids this problem by building
Hilbert-space partitions into the mutually-incompatible “frameworks” within which consis-
tent quantum-mechanical statements can be formulated. As no framework allows all true
statements to be formulated, this solution effectively rejects “the quantum state of the uni-
verse” as meaningless. Not having a meaningful quantum state, however, means not having
a meaningful Hilbert space, i.e. not having a meaningful collection of degrees of freedom.
Griffith’s solution, therefore, rejects the idea that there is a actual mereotopology of the
real world; hence it rejects the self-consistency of N.

6 Conclusion

By providing an adjustable level of granularity with a natural mereotopological interpre-
tation, the formal notion of a partition offers an attractive approach to the problem of
referential ambiguity. What has been shown here is that this approach cannot be pushed
to the limit of full objectivity. Any fiat partition that is overlaid onto the world is itself
referentially ambiguous in a way that cannot be repaired without appeal to an hypothe-
sized “natural” mereotopology N, and cannot be demonstrated to be repaired even if N is
assumed. Hence fiat partitions cannot serve as objective truthmakers, however useful they
may be as “for all practical purposes” truthmakers.
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