The text that follows is an author’s preprint of a paper published in Journal of Fxperimental and
Theoretical Artificial Intelligence, December, 2018, DOI: 10.1080/0952813X.2018.1544285



A mosaic of Chu spaces and Channel Theory II:
Applications to Object Identification and
Mereological Complexity

Chris Fields
23 Rue des Lavandieres
11160 Caunes Minervois, FRANCE
fieldsres@gmail.com

and

James F. Glazebrook
Department of Mathematics and Computer Science
Eastern Illinois University, 600 Lincoln Ave.
Charleston, IL 61920-3099, USA
jfglazebrook@eiu.edu
Adjunct Faculty
Department of Mathematics

University of Illinois at Urbana—Champaign
Urbana, IL 61801, USA

November 28, 2018

Abstract

In this Part IT of a two-part work, we proceed from the survey of concepts and techniques of
Chu spaces and Channel Theory in Part I to the characterization of human visual object iden-
tification, beginning with the construction of uncategorized object files and proceeding through
categorization, individual object identification and the tracking of object identity through time.
We investigate the relationship between abstraction and mereological categorization, particu-
larly as these affect object identity tracking. This we accomplish in terms of information flow
that is semantically structured in terms of local logics, providing an inferential mechanism for
object identification and tracking. We introduce categorical Cone-Cocone Diagrams to explic-
itly capture a bidirectional duality between “token” roles and “type” roles, and show that all
representations can be considered to play both roles. We discuss the emergence of mereotopol-
ogy from the representation of classifications with underlying simplicial complexes, and briefly
explore the emergence of geometric relations and interactions between objects. Throughout we
discuss the empirical support for the utility of this descriptive mechanism, particularly as a scale
free organization that is applicable to cognition and to AI systems in general, and raise open
issues and problems.

Keywords: Chu space, Channel Theory, Categories, Cognition, Perception, Object-Event



Files, Object Token, Context, Episodic Memory, Cone-Cocone Diagram, Mereological Complex-
ity.
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1 Introduction

In Fields and Glazebrook| (2018) we surveyed the categorical methods for describing semantic infor-
mation flow provided by Chu spaces (Barr, 1979} [1991} [Pratt] [1995] [1999a/b) and Channel Theory
(Barwise and Seligman, 1997} [Seligman|, 2009)). In this second part of a two-part work, we apply
these concepts and tools to formulate and explore a very general hypothesis: that the neurocognitive
architecture employed by humans — and possibly all mammals — is both structurally and function-
ally scale-free. Evidence that this hypothesis may be true, at least as a good approximation, comes
primarily from two sources: 1) graph-theoretic analyses of functional neuroimaging data that in-
dicate small-world or “rich-club” structure at multiple scales (Bassett and Bullmore, 2006; [Sporns
land Honeyl, 2006; Glazebrook and Wallacel [2009; Rubinov and Sporns|, [2010; [Sporns, 2013), and
2) the theoretical coherence and explanatory power of multi-layer, expectation-driven, recurrent
processing methodologies, particularly the adaptive resonance (Grossberg, (1980, 1988, (2007, 2013),
and free-energy /predictive-coding (Friston, Kilner and Harrison, [2006; [Spratling), 2008} [Friston and|
Kiebel, [2009; [Friston| |2010; Bastos et al., 2012; Spratling, 2016| 2017)) frameworks. Categorical




methods provide an attractive avenue for exploring the hypothesis of a scale-free cognitive archi-
tecture in general terms, as they are both expressively richer than graph theoretic methods and
more general than any specific recurrent-processing model. The particular tools and concepts pro-
vided by Chu spaces and Channel Theory are, moreover, designed for this application. While these
tools have been applied to human, as opposed just to abstract, cognition as reviewed in [Fields and
Glazebrook! (2018), these applications have been neither general nor strongly driven by empirical
results. Our objective here is to take this previous work to the next level, showing that the formal-
ism of Chu spaces and Channel Theory provides useful insights into the empirically-characterized,
systems-level architecture of human cognition [

As a model system for human cognition more generally, we focus on the visual identification of
individual objects as time-persistent entities. Visual object identification naturally involves mul-
tiple scales, from local analysis of image components such as edges or gradients to the semantic
interpretation of sequences of scenes as revealing causal processes or goal-oriented actions. Visual
object identification is one of the best-studied of all cognitive processes, although deep issues con-
cerning long-term persistence judgments remain unresolved (for recent reviews see [Fields, 2016,
2017)). It involves sensory, attention, memory, affective, and motor systems working in coordina-
tion, and hence touches on most major processing pathways involved in general cognition. We focus
in particular on developing category-theoretic descriptions of three interdependent components of
visual object identification: 1) the construction of object files (Kahneman, Triesman and Gibbs,
1992) and object tokens (Zimmer and Ecker, 2010)), 2) the binding of type and token information
in object categorization (Martin, [2007; Keifer and Pulvermiiller} |2012), and 3) the recognition and
categorization of mereologically-complex individuals. We characterize each of these component pro-
cesses in terms of both bottom-up and top-down information flows semantically structured by the
‘object-attribute’ relations of Chu spaces and/or the ‘token-type’ Classification relations of Chan-
nel Theory. In doing so, we combine these methods with the simplicial-topological and categorical
techniques that were developed in Fields and Glazebrook! (2018). We show that bottom-up and
top-down processes can be considered category-theoretic duals, and that this duality structure is
preserved across multiple scales of both type abstraction and mereological complexity.

While the notion of “entry-level” categories and the extension of such categories both upward
and downward in an abstraction (or type) hierarchy has been intensively investigated both experi-
mentally (Clarke and Tyler} |2015) and theoretically (Sowa, [2006), the representation of mereologi-
cal (i.e. part-whole) complexity has received far less attention. Mereological categorization can be
functionally dissociated from abstraction-based categorization in humans, e.g. in high-functioning
autism where “weak central coherence”, and hence deficit understanding of mereological complexity
may be displayed alongside normal or even superior abstraction ability (Happé and Frith, 2006;
Booth and Happél 2018)). How abstraction-based types and mereological types are related, and
how their implementations in humans are related, thus remain to be worked out. We focus on
one component of this issue: the question of how tokens representing individual, re-identifiable
objects, i.e. object tokens as defined in Zimmer and Ecker| (2010), are able to participate both as
such, and as instances of classified types in both hierarchies simultaneously. How, for example,
can an object token representing a particular, individual dog be both an instance of the entry-level
category [dog], as well as more abstract categories such as [mammal] or [animal], while at the same
time being represented as both an individual entity with mereological complexity at multiple scales,

*See also https://chrisfieldsresearch.com/cats.htm for a less formal review of the methods and tools used here.



and as a proper component of even more complex entities? As both abstraction and mereology
contribute to the construction of prior probabilities, and to the regulation of precision or atten-
tion within Bayesian classifiers (Friston, 2010)), the question of how these representations interact
— from an neural implementation perspective, how they cross-modulate each other — is crucial to
understanding both how mereologically complex objects are identified as individual entities, and
how identifiable individual entities are recognized as being mereologically complex.

Our interests here are neither metaphysical nor normative, but rather concern the emprically-
characterized functional architecture of categorization and object tracking over time implemented
by humans and the potential utility of Chu space and Channel-theoretic methods to describe this
functional architecture formally. We make no particular assumptions about the ontological struc-
ture of the world or the objects being perceived or about the reality or lack thereof of “universals”
or “particulars” as ontological entities, and make no claims about the veridicality or otherwise of
human perception. See |Churchland| (2012) for a treatment of these ontological questions along re-
alist lines that assumes object persistence as an ontological fact, and [Hofftman, Singh and Prakash
(2015) for arguments that such realist assumptions are inconsistent with an evolutionary account
of the architecture of perceptual systems.

We begin this second part of our two-part work in §2| with brief reviews of human perception,
categorization and attention as neurocognitive processes and of multi-layer recurrent networks as
models of these processes (e.g. Friston, 2010; Grossberg, 2013; Spratling, 2016). In we re-
describe perception and categorization, using the Chu space and Channel Theory tools assembled
in [Fields and Glazebrook! (2018), in a way that makes explicit the dualities between dynamic and
static properties, individuals and categories, and states and events. We capture these dualities
in a “Cone-Cocone Diagram” that formalizes the inferential steps required to link object tokens
together to produce a “history” of a persistent object. Such a diagram is seen to be structured
by networks of logic infomorphisms and ontologies, as developed in |Fields and Glazebrook| (2018,
§7-88), and is naturally a simplicial complex in its own right. We then turn our attention, in
to mereological categorization and to the key mereotopological question of how the boundaries
between the components of a complex object are defined. As scenes are themselves mereological
complexes, the boundary construction required for object segmentation emerges as the simplest
case of inter-object boundary definition. We conclude by listing some open problems for which the
current work provides additional motivation.

2 Perception, categorization and attention as neurocognitive pro-
cesses

The segmentation of visual scenes into “objects” that are represented as located in space, persistent
in time, and having some collection of invariant, identifying properties is fundamental to human
cognition. The implementation of this process has been extensively studied in both humans and
other mammals for several decades and is known to involve both bottom-up and top-down path-
ways, although the extent to which object- or higher-level expectations modulate low-level image
processing remains controversial (a current discussion appears in |Firestone and Scholl, [2016). Ob-
ject identification and categorization depends strongly on context (see [Wagemans et al., 2012ayb)
for recent reviews of low- and higher-level effects, respectively) and laboratory experiments are
typically conducted so as to minimize such context effects (e.g. Brady et al., [2008). Visual object



identification is generally conceptualized within a realist ontology in which the perceived objects
have observer-independent locations and features, but this is not necessary (Fields et al., [2018).
Here we focus on the data structures and processing employed in object identification and catego-
rization — what [Marr| (1982) called the algorithmic/representational level of analysis and Pylyshyn
(1984) termed the functional architecture — with some pointers to the relevant implementation-level
neuroscience (see [Fields, [2013, for a review of implementation details).

2.1 Dual-pathway vision and object files

The primate, and in particular human, visual system comprises two early processing pathways,
a dorsal pathway specialized for the rapid processing of location and motion information, and a
ventral pathway specialized for static (e.g. shape, size, texture and colour) feature information
(reviewed by |Goodale and Milner, [1992; Flombaum, Scholl and Santos, 2008; |Fields, [2011); see
Cloutman/ (2013)) for a discussion of interactions between these pathways, and |Alain et al.| (2001));
Sathian et al.| (2011) for evidence that auditory and haptic perception, respectively, have a similar
dual-stream organization. Perception of a located, featured object requires processing by both
pathways followed by fusion of the intermediate partial representations they produce.

Studies of visual object tracking over short (500 ms to a few seconds) time periods consistently
show that trajectory information dominates static feature information in determining object iden-
tity (Flombaum, Scholl and Santos, 2008; Fields, 2011). [Kahneman, Triesman and Gibbs (1992)
termed the initial, transient representation of a moving object in visual short-term memory the
“object file” (see also [Treismanl 2006). As under ordinary circumstances all objects are effectively
moving due to visual saccades, object files are at least typically initiated by dorsal-stream process-
ing. Static feature information extracted from the relevant part of the visual field by ventral-stream
processing is then bound to this initially motion-based representation. These processing steps re-
quire 50 — 100 ms in humans, much shorter than the time required for reportable visual awareness
of the object.

The object file is the fundamental “token” representation of a located, bounded, featured entity
that is distinguished from the “background” of a visual scene. It represents where the object
is, its visually-identifiable features, and its instantaneous trajectory during the time window At
from object-file initiation to feature binding. All further information about the object is added
by downstream processing; in particular, whether the object is novel or something previously
encountered, either as a type or as a specific individual, must be computed from information
available in memory.

With a few prominent exceptions, e.g. LIDA (Franklin and Patterson) 2006; |[Franklin et al.,
2012) and MACSi (Nguyen et al., 2013; [Lyubova, Ivaldi and Filliat, [2016), standard computer
vision architectures focus on feature extraction and feature-based as opposed to motion-based
object identification (see Kotseruba and Tsotsos, 2018, for review); hence they do not directly
replicate the human dual-stream process or object-file data structure. Whether doing so provides
significant advantages in Al systems remains to be determined.

2.2 Feature-category binding and object tokens

Object files are implemented in a content-dependent way across the posterior temporal cortex
(Martin, [2007; Mahon and Caramazza, [2009; Fields, [2013)); features of entities perceived as agents
or non-agents, for example, are encoded in the lateral or medial, respectively, fusiform gyrus (Fig.



1). This distributed, content-dependent encoding indicates that top-down category information,
e.g. agent versus non-agent, is already active in the binding of location and motion information to
feature information at the level of the object file.
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Fig. 1: Simplified functional architecture of human visual object perception within
the temporal lobe. Abbreviations are: MT, medial temporal area; STS, superior tem-
poral sulcus; MTG, medial temporal gyrus; PHC, parahippocampal cortex; V4, visual
area 4 (occipital cortex); MFG, medial fusiform gyrus; LFG, lateral fusiform gyrus;
PRC, perirhinal cortex; HC, hippocampus; ATP, anterior temporal pole. Solid lines are
feedforward; dashed lines feedback. Adapted from .

The functional architecture supporting object representation and object-directed attention is
already present at birth and its functionality rapidly matures toward adult levels during the first
two years; see e.g. |Gao et al| (2015); Huang et al (2015]) for neuroarchitectural and
for behavioural evidence. Visual feature identification, segregation of co-moving,
conjoined objects from other objects and the background, and the complementary process of group-
ing co-moving, non-conjoined objects, e.g. point-light walkers (Blake and Shiffrar} |2007)), are highly




dependent on top-down, memory-driven categorization or, in Bayesian terms, expectation confir-
mation or disconfirmation. Four- to six-month old human infants, for example, typically do not
segregate static or co-moving conjoined objects that older infants, children or adults do segregate,
but quickly learn to do so when the objects are separately manipulated (Johnson and Hannon,
2015)). Young infants similarly fail to group co-moving, non-conjoined objects (i.e. fail to perform
“object completion”) that older infants, children or adults do group, with the exception of point-
light walkers exhibiting biological motion, which infants perceive as single entities from the earliest
ages tested (Johnson and Hannon| |2015); see [Schlesinger et al.[(2012)) for a replication of a canonical
object completion experiment in the iCub robot. Object categorization is already robust in late
infancy (Rakison and Yermoleva, 2010) and develops rapidly with the onset of spoken language;
however, language acquisition is not a requirement for functional categorization ability in otherwise
cognitively-typical adults (e.g. |Schaller} 2012]).

Young infants exhibit robust object memory, particularly for familiar faces, and emotional re-
sponses to objects, again from the earliest ages tested. Feelings of familiarity and their attendant
emotions correlate with feature-based object recognition at the level of perirhinal cortex (Eichen-
baum, Yonelinas and Ranganath), 2007). Memory for a particular, individual, re-identifiable ob-
ject requires a memory-resident representation of that individual object, what [Zimmer and FEcker
(2010) have termed an “object token.” Recognizing a novel object as a distinct, individual thing
not encountered before involves encoding a new object token specifically for it. Recognition or
re-identification of the same individual object on a later occassion is then a process of matching
the current object file to this previously-encoded object token (Fig. 2). This process is, in general,
not straightforward, as object features, behaviours, and locations may change between encounters.
Even very young infants expect identified objects to maintain constant features, behaviours, and
locations over periods of non-observation of seconds to a few minutes (Baillargeon) |2008; Bail-
largeon et al., [2012). Both feature matching and, after about four years of age, the construction of
unobserved and hence confabulated, i.e. fictive causal histories (FCHs) of objects are employed to
establish individual object identity across observations separated by more than a few minutes (re-
viewed in |Fields|, [2012)). Enabling object recognition across feature, behaviour, and context changes
requires object tokens to have a “core” of essential properties that change only slowly through time.
The distinction between core and variable properties in object tokens is category-dependent and
not well understood (see |Scholl, 2007, for review).
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Fig. 2: Identifying an object as the same individual across time requires matching a
current object file to a memory-resident object token. Both feature matching and the
construction of unobserved (fictive) causal histories (FCHs) are employed to link object
tokens across observations (Fields, [2012)).

Eichenbaum, Yonelinas and Ranganath (2007) emphasize that categorization by type precedes
object-token matching; e.g. an individual person is typically recognized as a person before they are
identified as a particular individual person. The feeling of familiarity as well as other emotional
responses are generated already at the level of type recognition; [Eichenbaum, Yonelinas and Ran-
ganath (2007)) consider the example of recognizing a particular person both as a person and as a
specific individual person encountered before, but only after some deliberation as a known, named,
individual person represented by a memory-resident object token. How categories are related to
object tokens in semantic memory, e.g. how the category [person] is related to object tokens rep-
resenting particular, known persons is not well understood; in particular, whether categories are
encoded as prototypes with links to exemplars or as sets of exemplars from which prototypes can



be generated remains controversial (see [Hampton) 2016, for review). How the object token - to
- category relationship is implemented at the neural circuit level, i.e. the details of the circuitry
connecting ATP and PRC in Fig. 1, is also not well understood (see |Martin, 2007; |Keifer and Pul-
vermuller}, 2012} for reviews). While both categorization and individual recognition are generally
assumed to be implemented by some form of Bayesian predictive coding (Friston, 2010; Maloney
and Zhang, [2010)), entry-level categorization is known to occur first (Clarke and Tyler, [2015), and
exemplars similar to category prototypes are recognized more easily than less-similar exemplars
(Winkielman et al., [2006), how categorization constrains or guides object token matching in par-
ticular cases is also not well characterized. The category - to - object token satisfaction relation IF
remains, in other words, an empirical question for each particular type-token pair.

2.3 Context perception, event files and episodic memories

Objects are invariably recognized in some context, typically one involving other recognized or at
least categorized objects. The spatial “where” information processed by the dorsal stream (cf.
Fig. 1) provides the “container” for this context as well as the relative locations and motions of
objects within it. Contexts typically, however, also include “how” and “why” information, largely
derived by processing pathways in parietal cortex (Fields, [2013)), that represent inferences about
mechanical and intentional causation, respectively. As in the case of object categorization and
individual object-token encoding, these causal inference capabilities are present in rudimentary form
in early infancy, and develop rapidly over the first two years (Baillargeon et al., [2012; .Johnson and
Hannon, 2015). Context assembly has been mapped to parahippocampal cortex, with object token
to context binding implemented by the hippocampus (Eichenbaum, Yonelinas and Ranganath, [2007;
Ranganath| 2010; Fields, 2013} Ritchey, Libby and Ranganath, 2015)). Hommel (2004) has termed
the fully-bound representation of interacting objects in context an “event file”; these representations
mediate event understanding and context-dependent action planning. Event files are the least
complex visual representations that typically enter human awareness; hence they can be considered
to be implemented by coherent activity at the level of the global neuronal workspace (GNW, cf.
Fields and Glazebrook, 2018, Remark 7.1). For specific GNW-based models of event awareness, see
Dehaene and Naccache| (2001); Baars and Franklin (2003)); Dehaene and Changeux| (2004); Baars,
Franklin and Ramsoy| (2013); [Dehaene, Charles and King (2014); see also Franklin and Patterson
(2006); Franklin et al. (2012)) for discussions GNW design principles as providing the motivation
for LIDA.

Event files correspond to “episodes” in episodic memory, again a hippocampus-centered func-
tion (Eichenbaum, Yonelinas and Ranganath| |2007; |[Rugg and Vilberg, [2013; |Ritchey, Libby and
Ranganath, 2015). As sequences of episodic memories typically contain many of the same “players”
— including in particular the remembering subject represented as a “self” (Renoult et al., [2012) —
they pose a particular problem for object-token updating. Each episodic memory must contain at
least some episode-specific details, e.g. what a particular person was wearing, in addition to the
“core” identifying information for each included object token. Linking episodic memories into a
temporal sequence requires maintaining this “core” of each object token — which it is useful to con-
sider as a “singular category” with just one member — while modifying the “essential” identifying
information for the represented object as needed, e.g. updating a person’s age or personality char-
acteristics (Fig. 3). This maintenance process is effectively the construction of a history or causal
model of the individual represented by the object token. As such histories occur between episodic
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memories and are by definition unobserved, they must be confabulated; they are FCHs as discussed
above (Fields, 2012). Episodic memory recall and reconsolidation can modify the properties as-
sociated with or even the presence of the object tokens referenced by the memory, demonstrating
the fragility of such FCHs (Schwabe, Nader and Pruessner, 2014). Infants are capable of episodic
recall over short periods — e.g. the time periods required for experiments assaying causal inference —
but have limited recall and reconsolidation ability over longer periods (Hayne, [2004; Bauer, 2006)).
Hence infants can be expected not to maintain robust object histories until about age four, the age
when FCH construction typically starts and “childhood amnesia” typically ends.
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ject. Successful binding of a current object file to a memory-resident object token that
is linked to an episodic memory requires the construction of an FCH that “explains”
how the current object could have gotten to the current context from the remembered
one. The object token constructed to represent the current object in the current con-
text incorporates updated “non-essential” features as well as the current location and
motion information. The singular category specifying the object’s “core” identifying
criteria constrains the recognition and updating processes. b) Updating the constraint
information in a object-specifying singular category defining the “essential” or “core”
characteristics of an individual object given a sequence of episodic memories and a new
event. Such “core” updates, e.g. of a person’s apparent age or personality charac-
teristics, must be infrequent compared to object token updates to maintain a coherent
individual object history and hence coherent identification criteria. Adapted from Fields

(2012).

Episodic memories can also reference object tokens for individuated and categorized but other-
wise unidentified objects, e.g. “some other people” present at a meeting or “other cars” involved
in an accident. These “other” objects may appear in no other episodic memories and have no
associated histories; they are represented by effectively one-off object tokens that are required by
the data structure but play no other role in the system. The human ability to learn to recognize
new individuals indicates that such minimally filled-out object tokens are available for matching
new incoming object files; however, their lifetime and the extent and context-dependence of their
availability remain poorly understood.

2.4 Attention, salience and Bayesian precision

Systems with limited cognitive resources must allocate processing to the inputs most likely to be
important. In the current setting, this corresponds to paying attention to some objects and not
others. Attentional control in primates is implemented by competing, cross-modulating dorsal (top-
down, goal-driven, proactive) and ventral (bottom-up, percept-driven, reactive) attention systems
(Goodale), |2014; [Vossel, Geng and Fink|, |2014). The “salience network” that controls these attention
systems develops in concert with the medial-temporal object recognition network, starting from
earliest infancy (Gao et al.l 2015; [Uddin, |2015).

Baysian predictive coding has long been employed as a model of perceptual processing from
early vision through categorization and individual object identification (Friston, [2010; [Maloney
and Zhang, 2010; Spratling, [2016). Bastos et al.| (2012)) review structural and functional evidence
that predictive coding is implemented at the level of local microcircuits comprising cortical mini-
columns, the dominant architectural units in mammalian cortex, as well as at the larger scales of
functional networks responsible for trajectory recognition, categorization or object-token matching.
More recently, Spratling (2017) has implemented a multi-scale predictive coding model of object
recognition and demonstrated its efficacy for objects in natural scenes. This use of the same or
similar processing methods at different scales, the overall quasi-hierarchical organization of per-
ceptual processing (Van Essen, Anderson and Felleman, |1992)), and the small-world, i.e. scale-free
structure observed in functional-imaging studies (Rubinov and Sporns, |2010; Sporns| [2013) all
suggest that visual object identification exhibits the kind of association between scale and coarse-
graining introduced in Fields and Glazebrook (2018] §4-§5). The sections that follow employ the
category-theoretic concepts and tools developed in |Fields and Glazebrook (2018) to examine and
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refine this idea that the neurocognitive architecture of human visual object identification may be
both structurally and functionally scale-free.

In a Bayesian predictive coding system, attentional control can be modelled by varying the
precision assigned to inputs and expectations. In the Bayesian “active inference” framework of
Friston| (2010), relatively high-precision inputs drive the revision of expectations and model reac-
tive, ventral attention, while relatively high-precision expectations drive input-changing behaviour
and model proactive dorsal attention. Attention-switching in this framework is dependent on over-
all cognitive-affective state, with affective inputs regulating approach and avoidance particularly
critical for inducing reactive attention. The framework also allows direct alterations of precision
assignments as inferential outcomes (Friston et all 2015). The adaptive resonance (ART) frame-
work of |Grossberg| (2013) provides a functionally similar model of attentional control, although its
motivation and underlying ideas are distinct from those of Friston (2010)) and its state-updating
rules are not Bayesian. When viewed as implementations of constraint hierarchies, however, both
Bayesian active inference and ART exhibit the deep duality between bottom-up and top-down in-
formation flows characterized formally in below. It is this duality, we will argue, that makes
them useful models of attentional control.

3 Tokens, types and information flow in perception and catego-
rization

While the human classification of perceived objects into cognitive categories corresponding to
verbally-expressible concepts like “person” or “house” forms part of the motivation for the work
of Dretske| (1981)); Barwise and Perry| (1983)); Barwise and Seligman! (1997) and others reviewed in
Fields and Glazebrook| (2018), category-theoretic methods have yet to be applied to the analysis
of these processes at the level of detail reviewed in §2| above. The formal treatment of ontologies
discussed in |Fields and Glazebrook| (2018] §7.3), for example, does not explicitly address the ques-
tion of how ontologies are constructed or maintained through time in the face of new observations.
While models at this level of abstraction are of interest conceptually, they are not sufficiently de-
tailed to generate testable predictions. We begin in this section to develop the constructs needed
to build models at the level of detail needed to make contact with the empirical results reviewed in
We introduce, in particular, the idea of a Cone-Cocone Diagram (CCCD) to capture the deep
duality evident in the bidirectional flow of constraints between perception and categorization. We
point out ways in which “natural” category-theoretic concepts, particularly duality, help to make
sense of empirical findings, and identify open issues for either formal or empirical investigation.

3.1 Representing object files in a Chu space

The fundamental perceptual token, the initial representation of a discrete perceptual entity, is
the object file. As outlined in §2.1] above, an object file binds a collection of static features such
as size, shape, texture and colour extracted by ventral-stream processing to “instantaneous” (i.e.
within the At of visual short-term memory) location and trajectory information extracted by dorsal
stream processing. Recall from [Fields and Glazebrook| (2018, §2.1) that a Chu space is just a set
of objects and attributes organized by a satisfaction relation I. Let F} ... F, be a finite tuple of
static features, each of which can have any one of m distinct values; e.g. if F; is ‘colour’ its distinct
values are the colours distinguishable, at its finite resolution, by the visual system of interest.
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Assume for simplicity that each of these values characterizes the object uniformly. We can then
consider a finite binary array F' = [f;;], where f;; = 1 for some object if and only if feature F; of
that object has its j* possible value. We can similarly consider finite binary arrays X = [xi51] of
discrete instantaneous three-dimensional locations and V' = [v;;;] of discrete instantaneous three-
dimensional velocities. We will restrict attention to the case in which every object has some value
for every perceptible feature, a single instantaneous location, and a single instantaneous velocity;
feature changes and extended curvilinear trajectories are treated with sequences of such simplified
files. In this case, we can characterize an object file as an instance of the finite array [F, X, V].
The set of all possible instances of [F, X, V], and hence the set of all possible object files that
can be generated by the visual system of interest, is a finite set {O;}. This set becomes larger,
but still remains finite, when complications such as non-uniform features or curvilinear trajectories
are included in the description, provided that the resolution of the system remains finite on all
dimensions.

The most fundamental abstraction implemented by the visual system is object permanence, i.e.
the maintenance of object identity over time (see Flombaum, Scholl and Santos, 2008} |Fields, 2011,
2017, for reviews). At the level of the object file, the relevant timeframe for object permanence is a
“view” lasting between half a second and a few seconds. Objects that remain fully or even partially
visible during such a view are considered to remain “the same thing” while seen. Whether an object
that does not remain visible is perceived as remaining “the same thing” during a view depends on
the age of the perceiver (less or more than 1 year) and the details of its occluded trajectory (Fields,
2011)). Objects moving sufficiently fast are “seen” as persistent even if their static features, e.g. size,
shape or colour, vary over considerable ranges (Flombaum, Scholl and Santos|, 2008). The relative
insensitivity to static features of short-term object permanence indicates that it is a primarily
dorsal-stream phenomenon.

Let {C;} be the finite set of finite (indeed short) sequences of object files that are treated by
the cognitive system of interest as indicating object permanence during the course of a single view.
The elements of {C;} are then natural “types” relative to the “tokens” in the set {O;} of possible
object files; an element C; € {C;} can be though of as “associating” a sequence of object files into
a single abstracted representation. Hence we can consider

Ci = ({0i},IFp, {Ci}) (3.1)

to be a Chu space, where here I-p is the empirically-determined relation “consistent with object
permanence” defined on sequences of object files. As noted above, this IFp is strongly dependent
on trajectory and occlusion but relatively independent of static feature constancy. The Chu space
C; clearly describes a Classification in the sense of Barwise and Seligman (1997) as discussed in
Fields and Glazebrook (2018, §6.1). Note that an element of {C;} may not be a concept in the
sense of Fields and Glazebrook (2018, §3), as the value of every feature as well as the position and
velocity can, at least in principle, change between every object file contributing to the perception of
a persistent object. The development of object trackers implementing a relation IFp approximating
that of human vision remains a substantial Al challenge (Kristan et al.l 2015).

The association of object files into an element of {C;} adds top-down, expectation-based infor-
mation about identity over time to the “raw” information of perception. This added information
may, in fact, be incorrect; trajectories that appear to preserve object identity may involve distinct
objects, while those that appear not to preserve object identity may involve a single object (Fields,
2011). More subtly, association of object files into an element of {C;} also subtracts information
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by suppressing motion information available at the individual object-file level relative to shared
or average feature information. While trajectory information dominates feature information in de-
termining which sequences of object files to treat as indicating persistence and hence to associate,
persistent objects are required (by humans) to have persistent features, at least during the course
of short, single-view interactions (Baillargeon), 2008]). Conferring persistence on an object converts
its observed motion into an abstracted, categorizable “behaviour” that the object may or may not
execute on other occasions. We will see this combination of top-down information addition (ab-
straction to an invariant, here identity over time) and bottom-up information loss (coarse-graining,
here of both motion and feature information) repeated at multiple scales. We develop a formal
representation of this process in below.

3.2 From object files to object tokens and object histories

Persistent objects are the “entities” in the common-sense ontology humans typically develop in late
infancy. These entities participate in episodic memories and are represented by object tokens and,
if they recur sufficiently often to be recognized as persistent individuals, by singular categories and
(largely fictive) histories. As with the initial abstraction of persistence, these successive levels of
abstraction both add and subtract information. Types at one level of abstraction, in particular,
become tokens at the next.

As representations of persistent objects, object tokens can be identified with elements of the set
{C;}, with the abstract “type” representations of finite sequences of object tokens. The functional
context in which object tokens are active is not only more coarse-grained than that of object files;
it implements a distinct set of constraints. While object files represent motion at high resolution,
motion information is suppressed at the object token stage to enable re-identification of individual
objects regardless of how they are moving |Fields| (2011). Object tokens are, at the time of their
construction, already represented as instances of multiple types (Fig. 4). All persistent objects
are instances, first, of the types representing their visually-identified features. They are, second,
classified automatically by threat detection, agency detection and animacy detection systems active
beginning in early infancy (Fields, 2014); the presence of a face alone indicates agency to human
infants. They are also classified, when possible, into entry-level and then more abstract cognitive
categories, an ability also developed in infancy (Rakison and Yermoleval |2010)). These token - type
relationships can be represented as Classifications, as is standard in the literature (e.g. |Barwise
and Seligman, 1997), and as surveyed in [Fields and Glazebrook| (2018]). Recognition of an object
by type generates a feeling of familiarity with the type; e.g. seeing a cat generates a feeling of
familiarity with cats (Eichenbaum, Yonelinas and Ranganath, [2007)).

16



Animate Animal

!

Mammal

—p Cat

'

Bombay cat

Black _thing Furry_thing Small_thing

Fig. 4: An object token is classified at construction into multiple types by distinct
but cross-modulating processes. These include animacy and agency detection, emotion-
mediated threat detection, and entry-level followed by superordinate and subordinate
categorization into “types” of object.

Here we are primarily interested in the re-identification of individual objects, i.e. the creation
of an association indicating identity, and hence persistence over time, between an object token
constructed now and one constructed previously. At the object token level, the relevant timeframes
for persistence range from the few seconds separating views to the decades separating a high-school
graduation from a 50" reunion. How humans are capable accurately re-identifying individual
objects across such long gaps in observation, and despite the static feature, behaviour, and context
changes such long gaps typically entail, has posed a problem to philosophers for millennia (Scholl,
2007)) and remains a critical question for both cognitive neuroscience and Al (Fields, [2016).

Let Ci(t1),Cj(t2),...Cx(tn) be a sequence of n object tokens encountered at successive times,
possibly with long gaps between observations. Recognizing successive object tokens as tokens of
the very same individual thing involves at least the two processes discussed in §2.3| above, i.e.
matching to a set of core features composing a singular category and linking via FCH construction,
with the uncertainty associated with each process increasing with the time between perceptual
encounters. Let Dj[t1,t,] comprise both the singular category and the FCH that together confer
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persistence on the object-token sequence Cj(t1), Cj(t2),...Ci(tn), and let {Dj[t1,t,]} be the set of
all such representations over sequences of elements of {C;} indexed by observation times in the
closed interval [t1,t,]. Each element of {Dj[t;,,]} represents the “package” of evidence used by
the perceptual agent to identify some persistent object [ between times t; and t,; the entire set
{Dy[t1,t,]} specifies the identification criteria for all of the objects the agent is capable of identifying
during this time interval. As in the case of sequences of object files discussed in above, these
elements are natural “types” for the object tokens over which they are defined. Hence we can
consider a Chu space or Classification (in the sense of Fields and Glazebrook| (2018, §6.1)) A;[¢1, t,,]
as given by:

Ailt1, tn] == {Cilt1, tnl}, {Dilt1,ta]}, Ik p [t1, tn]) (3.2)

where IFp [t1,t,] is the empirically-determined relation “consistent with object permanence” defined
on sequences of object tokens between t; and ¢,. As with the short-term persistence relation I-p
between object files defined in determining this longer-term persistence relation IFp [t1,t,] for
particular human subjects and particular objects is a difficult empirical question (see e.g. Nichols
and Brunol 2010} for experiments designed to determine the criteria people use to identify other
people as persistent over time). Implementing this relation requires solving an instance of the frame
problem, i.e. determining the set of inter-context changes that do not alter the identity of an object
even though they may radically alter its features or behaviour (Fields|, 2013)). The continuing efforts
to develop facial-recognition systems robust against everyday feature and context changes illustrate
the difficulty of this problem (Patel, Kothari and Bhurchandi, 2015).

The set of time-indexed representations {D;[t1,t,]} can be conceptualized more abstractly by
noting that at each t;, the set of possible object tokens {Cj(t;)} is also the set of types of a
classification. For each single time step t; — tj, the persistence criterion I-p [t;,t;] induces
maps — what we have called FCHs — between pairs of object tokens that can be consistently
considered to be tokens of the same individual object (Fig. 5a). These FCHs, together with the
maps (here assumed to be identities) linking the singular categories for persistent objects, can be
considered infomorphisms between the underlying classifications at t; and . It is then natural
to interpret the set {Dj[t;,tx]} as a channel between the underlying classifications; this channel
comprises, intuitively, the (assumed constant) singular categories and the constructed FCHs (Fig.
5b). Extending the process of linking object tokens by FCHs forward in time results in a hierarchy
of channels, with the most temporally-extended channel as the colimit (Fig. 5c¢). Dropping the
explicit {} to simplify the notation, the colimit cocone D;[t1,t,] admits a vertex classification,
which we denote C; (with time interval [t1,t,] understood). Recall that this C; is induced by a
complex of infomorphisms:

= Ailt, ] — Aipa[t te]) — - (3.3)

as depicted in [Fields and Glazebrook (2018, (6.7)). We will refer to such diagrams D;[t1,t,] as
“Cocone Diagrams” or CCDs extending for a specified time interval, e.g. ¢;...t, in Fig. 5c.

a)
SCi(t;) ——9— SC;(ty)

Inst T T Inst

OTi(t;) OTi(tx)

FCH
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Fig. 5: a) Interpreting sequential object tokens as representing the same persistent
individual constructs an FCH to link them. The FCH is depicted as acting backwards
in time as it is built from the new observation to the old one. Here SCi(t;) denotes
Singular Category @ at t;, OTj(t;) denotes Object Token ¢ at t;, etc. Id = Identity,
and Inst = Instance. b) Families of FCHs link sets Cj(t;) of object tokens instantiated
at different times. The set Dj;[t;,t] of abstracted singular category plus FCH pairs
representing objects persistent from ¢; to t; can be viewed as a channel between sets of
linked object tokens. ¢) A CCD representing an object history during a time interval
t1...tn. The set D;[t1,t,] is a colimit cocone for sequences of object tokens consistent
with persistence from 1 to t,.

The extension of Fig. 5b to the colimit, Fig. 5c¢ embodies a theoretical prediction, viz. that
histories representing individual entities are extended forward in time without altering their repre-
sented “past” states. This prediction sometimes fails, e.g. when an artwork is discovered to be a
forgery or when a trusted civil servant is discovered to be a spy. That such failures are exceptional
and tend to provoke cognitive crises indicates that the prediction of incremental, forward history
construction is a good approximation. Considering the “essential” identifying properties of objects
to remain constant is clearly also an approximation; such properties can change over time, though
they cannot all change together without causing identification failure. In the case of human beings,
for example, both (approximate) age and core personality characteristics are identifying properties
(Nichols and Bruno, [2010)); hence a child with an adult friend’s personality is not identified as one’s
adult friend. Slow, asynchronous changes in the composition of singular categories and hence small
departures from identity of the linking maps between them do not alter the structures of the above
diagrams. Such changes do, however, render FCH construction more difficult.
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3.3 Contexts, event files and episodic memories

Objects are never encountered in complete isolation; even the most austere psychophysics exper-
iments have a computer screen and the surrounding laboratory as a context. In real-life settings,
objects are typically encountered in interacting groups. Object tokens have, therefore, lateral syn-
chronic associations as well as the diachronic links implemented by FCHs. The event-file construct
of [Hommel (2004) provides a “snapshot” of such associations over the few-second to few-minute
timeframes intuitively regarded as single “events.” Event files capture interactions between objects
as well as their significance and affective consequences for the observer. These kinds of information
provide crucial input into the FCH construction processes that allow the objects participating in
the event to be identified (Eichenbaum, Yonelinas and Ranganathl 2007; |[Zimmer and Ecker, [2010;
Fields, [2012)).

Event files as defined by Hommel| (2004) are effectively tokens; each represents a discrete event
that can be encoded and then retrieved as a discrete episodic memory. Single events are by defi-
nition localized in time and hence cannot be repeated; recalling an event and hence (partially and
perhaps inaccurately) reconstructing an event file, in particular, occurs in a current context and
itself constitutes a distinct event. It is now clear that the context in which an episodic memory is
recalled influences the recalled content, and the context-dependent process of re-encoding (“recon-
solidating”) an episodic memory for future access can also alter its content (reviewed by |Schwabe,
Nader and Pruessner, 2014). Such lability challenges the forward construction of object histories
depicted in Fig. 5; however, it is generally considered a deficit of human cognition and hence
not a goal for Al systems. The recognition of event types as such, independently of the objects
involved, is not well characterized experimentally. While recognizing instances of events or event
sequences completely defined by known sets of rules (e.g. chess games) may be straightforward
given a suitably abstract description, recognition of events not defined by known sets of rules, such
as incipient stock market crashes (Fievet and Sornette, [2018), is considerably more challenging.
It seems reasonable to expect, however, that event tokens (i.e. event files) and event types can
be regarded as forming classifications under the action of a satisfaction relation that maps tokens
to types (cf. Fields and Glazebrook, [2018, §7.5-§7.7). We consider this further in §4| below in the
broader context of mereological complexity and reasoning.

3.4 Learning new categories and Cone-Cocone Diagrams

With high frequency in infancy and childhood but typically reduced frequency thereafter, humans
encounter not just individual objects, but object types that they have never encountered before.
Humans often learn to recognize such novelties from just one “training” encounter. Understanding
how humans achieve such one-shot learning is a major challenge for cognitive neuroscience, just as
replicating this ability is a major challenge for machine learning. As shown by |Fei-Fei, Fergus and
Perona (2006)), one-shot learning of a novel category benefits from the use of all known, categorized
object tokens as negative examples; this suggests that negative category links as well as positive ones
are needed, and that negative analogs of the construction given by must be considered. Besides
achieving efficient, preferably one-shot learning from exemplars, this problem has (at least) two
additional components: rapidly recognizing novelty (i.e. categorization failure) and switching from
classification mode to learning mode. As|Oudeyer, Baranes and Kaplan| (2013) have emphasized, it
is learnable novelty that must be recognized; otherwise precious resources are wasted on attempts
to learn the unlearnable.
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Consider a novel object that is easily classified as an instance of a familiar entry-level category:
a novel cat, for example. The object is recognized as novel because its object token does not
match any existing singular category, cannot be linked to any existing object token by a plausible
FCH, or both. Interacting with the object over an extended period (several views, a few minutes)
or encountering it again after a short delay allows certain of its properties to be identified as
unchanging; in the case of a cat, these may include size, shape, colour pattern, face and voice but
not location or behaviour. The (short) sequence of distinct object tokens recorded during such
interactions serves, in other words, to associate some properties of the object into a provisional
singular category. The principle of association here is, once again, persistence: each successive
object token indicates the object as persistent, and the features encoded by object tokens in the
sequence are similar enough to be treated as identical.

We can, in this case, consider the distinct feature instances encoded by the distinct object
tokens in the sequence to be feature “tokens” and consider the object tokens themselves, which the
criterion of persistence identifies as representing one individual object, as jointly defining a “type”
that organizes those tokens. The construction employed in §3.1| above can then be employed to
construct a classification of these (feature) tokens into these (object) types. This classification is
the Chu-space dual of the classification of object tokens by singular categories shown in Fig. 5a.

The requirement of a familiar entry-level category can now be relaxed: suppose that what is
encountered is not a novel cat, but an entirely novel animal, perhaps a pangolin or a platypus. In
this case, categorization failure for known animal categories indicates that a new category must
be learned, while categorization success (we can assume) under [animal] indicates that it is a new
animal category that must be learned. Non-matching animal categories then provide negative
exemplars. However novel the object encountered is, it must have some familiar features; if it is
recognized as an animal, these would be shared animal features such as an approximate size and
shape, particular shape of the face, and aspects of its behaviour. Even very young infants can
use features of these kinds to initiate classification and identify novelty (Rakison and Yermoleva,
2010)). Placement in any familiar category allows the construction of a singular category as outlined
above. Construction of a non-singular category — e.g. [pangolin] — merely requires abstraction, i.e.
allowance of inexact matches.

The problem of maintaining a singular category across changes in essential features introduced
in above can now be seen as a special case of category learning. A singular category is robust
against feature changes if the FCHs linking its instances are strong enough that persistence at the
object token level can induce persistence at the singular category level. The “flow of association” in
this case is the reverse of that depicted in Fig. 5c; the properties composing the singular category
are in this case the “tokens” that are held together by the persistent object history as a “type.”
This dual view of histories helps explain why “revisionary histories” involving forgery or disloyalty
discussed in are problematic; they introduce inconsistencies at the singular category level that
cause failure of the type (history) — token (singular category instance) classification relation.

Reversing the arrows in a CCD (e.g. Fig. 5c¢) yields a cone, the dual of a cocone. A system
capable of both object history construction and its dual, category learning with singular category
maintenance as a special case, is thus characterized by a Cone-Cocone Diagram (CCCD); such a
diagram can be represented by making all of the arrows in a CCD such as Fig. 5c¢ double-headed.
Continuing the notation used in Fig. 5c, we denote the corresponding CCCD by Dg,[t1, t,].

A CCCD captures the simultaneous upward and downward flow of constraints that characterize
human visual object identification and, it is reasonable to suppose, other sensory modalities both
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functionally and neuro-architecturally (Hochstein and Ahissar, 2002). The duality expressed by a
CCCD thus includes the functional duality between high-precision expectations and high-precision
inputs in an active inference system |Friston (2010), and hence the duality between dorsal (active)
and ventral (passive) attention systems. It allows us to understand the central paradox of famil-
iarity, that familiarity can confer either high or low salience in a context-dependent way, from a
mechanistic perspective; indeed the “switch” between these dual constraint flows appears to be im-
plemented, in humans, by the amygdala - insula - cingulate axis at the core of the salience network
(e.g. [Uddin, 2015). A CCCD also, however, captures a more subtle duality between processes: it
enables object files, object tokens, and object histories to be viewed not as tokens, but as types that
organize, respectively, trajectory components, features, and feature-based singular categories into
mutually-consistent collections. Representing visual object identification by a CCCD is, therefore,
making a strong empirical prediction: that the satisfaction relations IFp , IFp [t1,tn] (3.2)
and their extension to the singular category — history relation are not just idiosyncratic results of
individual learning histories, but also logical links that construct a “possibility space” for the com-
bined perceptual/conceptual system. Such logical constraints correspond, in a Bayesian picture, to
very low and very high prior probabilities being effectively clamped to zero and one respectively;
hence violations of these constraints would be expected to generate stronger “conflict” signals than
predicted by a continuous probability model. The representation of visual object identification by
a CCCD predicts, therefore, systematically poor performance on both low- and high-probability
judgments under uncertainty, a phenomenon that is robustly observed (reviewed by Kahneman)
2011)). It also predicts a larger affective response to both success and failure of object identification
than a continuous model. Whether this is correct remains to be determined, but the high affective
response to apparent prediction failures observed in autism (e.g. Lawson, Rees and Friston, [2014;
Van de Cruys et a., 2014), for example, renders it plausible.

3.5 Local logics embedded in CCCDs

Recall that any classification generates a natural local logic in accordance with [Fields and Glaze-
brook| (2018, Definition 6.6), and that [Barwise and Seligman| (1997, Prop. 12.7) ensures that any
local logic defined on a classification can be identified with the local logic generated by the clas-
sification (cf. Fields and Glazebrook, 2018, Example 7.1). These ideas can now be applied to the
classifications defined above to characterize the categorization and identity maintenance processes
in terms of the actions of local logics (see also Kent, [2016]).

To begin, we can immediately apply the principle of [Fields and Glazebrook| (2018, Definition
6.6) to (3.1) relating “instantaneous” object files (tokens) to short sequences of object files (types)
indicating object permanence, to obtain a local logic Lg(C;) with regular theory Th(C;) = ({C;},+
). This Th(C;) = ({Ci},F) expresses the effective criteria for short-term object permanence and
hence captures, albeit implicitly, an important part of the semantics of “persistent object” for the
system it describes. Likewise, in (3.2), we have a local logic Lg(A;[t1,t,]) with regular theory
Th(A;[t1,tn]) = ({Di}[t1,tn],F) (for each i) that captures the effective criteria for longer-term
object permanence and hence additional components of the semantics of “object.” In both cases all
tokens are normal as defined in Fields and Glazebrook| (2018, Definition 6.5). On recalling Fields
and Glazebrook| (2018| Definition 6.7), we can take as a working principle that temporal sequences
of infomorphisms such as are also logic infomorphisms satisfying the properties of |Barwise
and Seligman (1997, 12.3). Accordingly, an underlying semantic structure is built into Fig. 5¢, and
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hence to the ensuing CCCD diagram Dg;|t1, t,].

Sequents as introduced in |[Fields and Glazebrook (2018, §6.7) play an interesting role in this
development. On the one hand, they are implicitly assumed in the preceding discussion (see also
Fields and Glazebrook (2018, §6.8,§7.3). On the other hand, we recall from |Fields and Glazebrook
(2018, §7.8) that on relaxing the sequent relation - to a conditional probability (see |Fields and
Glazebrook, 2018, (7.27)), a sequence of logic infomorphisms may function as a chain of Bayesian
inferences. This is consistent with the use of Bayesian methods, particularly Bayesian predictive
coding, reviewed in above, and suggests that the diagrams Dg;[t1,t,] may be considered
as effective carriers of Bayesian inference through sequences of episodic memories (pace issues of
memory change under reconsolidation and of low- and high-probability clamping), an idea that is
extended in §4] below.

As regards ontologies, we recall that both types C; and their identification criteria D;[ty, t,]
are not strictly speaking sets of (formal) concept symbols. We suggest that a weaker sense of on-
tology is obtainable using the generic relations <, L,| in |[Fields and Glazebrook! (2018, Definition
7.3). Generally, however, we can acknowledge the viewpoint of Kalfoglou and Schorlemmer| (2003)),
which sees the local logics themselves as characterizing effective ontologies. This derivative sense
of ontology is useful for our purposes since ontological partitions into “entities” tend to induce
“spatial” boundaries around conceptual and/or perceptual partitions (Smith) 1996)). Such induced
boundaries can be identified with coarse-grainings and hence with induced coarse-grained geome-
tries, as will be discussed in below. An alternative, more abstract approach to ontologies and
the associated knowledge representation is described in Spivak and Kent| (2012).

4 Parts and wholes: Using Chu spaces and information channels
to represent mereological complexity

The Formal Ontology introduced by [Husserl (1970) developed a theory of “parts” and “wholes”
towards a foundation for mereological (i.e. part — whole) reasoning, a methodology that also has
roots in the works of Aristotle, Brentano, Whitehead, and others (as reviewed and developed in
Casati and Varzi, [1999; |Landol [2017; Lesniewski, |1929; Simons, |1987; Smith, |1996). Formalizations
of mereological reasoning (e.g. |Casati and Varzi, |1999; Smith), |1996) have found wide application
in geographic information systems (GIS) and formal ontologies for scientific domains. The imple-
mentation of mereological reasoning in humans is not, however, well understood; indeed we have
been able to find only a single neuroimaging study explicitly comparing mereological and functional
classifications (Muehlhaus et al., 2014). As mereological reasoning appears specifically to fail in
the “weak central coherence” (WCC) phenotype of autism spectrum conditions (Happé and Frith),
2006)), understanding its implementation and its relation to abstraction, which does not consistently
fail in WCC, is potentially of clinical relevance.

4.1 Perceptual identification of mereologically-complex objects

The macroscopic objects perceptible by humans are by definition mereologically complex: they
have multiple perceptible parts, each of which has further parts, etc. Such objects can, moreover,
be assembled into larger complexes, with perceptual scenes being ubiquitous, transient examples.
Many such larger complexes are, however, not transient but rather meaningful, persistent objects
in their own right. A fundamental challenge posed by human object perception is to understand
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what mereological complexes are perceived as “whole” objects (and likewise, which ones are not),
how object tokens representing such complexes are constructed, and how such object tokens are
linked into persistent histories despite changes in the properties and even identities of the “parts”
making up the complex.

A specific example of a mereological hierarchy is shown in Fig. 6. Individual human beings,
such as author CF, are entry-level (EL) objects and hence are represented by EL object tokens.
Human beings are inevitably members of larger complexes, including families, extended families,
tribes, ethnic groups, nations, etc. The smaller instances of such complexes (e.g. human nuclear
families) can be directly perceived; larger instances may not be perceptible but can be referred to
using language, images, and abstract graphics. Hence object tokens can be constructed for such
complexes. Object tokens representing “parts” such as CF are naturally linked to object tokens
representing complexes, such as CF’s family, by “part_of” relations. Such relations similarly link
parts of CF to CF. Entry-level objects appear to play a special role in such hierarchies; “part_of”
links are transitive both above and below EL objects, but not across EL objects. A part of CF is
not a part of CF’s family, just as a part of a car is not a part of a fleet of cars.
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Fig. 6: Example of an object token (OT) hierarchy extending both above and be-
low a mereologically-complex entry-level (EL) object, one of the present authors (CF).
Each OT has an associated singular category (SC) specifying identifying static and be-
havioural features. These SCs are in turn associated with general categories, some of
which are shown here. Solid arrows show typical “part_of”, “has_a” and “is_a” links.
Dashed arrows show induced part_of links; red “X” indicates the failure of “part_of”
transitivity across the EL OT.
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Hierarchies of tokens linked by “part_of” relations are commonplace in Al systems. Such
“part_of” hierarchies raise the questions of what the “part_of” relation is, how it is established,
and how it is maintained over time. The correspondence between object tokens and singular cate-
gories discussed in above provides a partial answer: “part_of” relations between object tokens
correspond to “has_a” relations between singular categories, which in turn correspond to “has_a”
relations between general categories (Fig. 6). While the object token is the locus of learning for
the first exemplars of EL objects encountered in infancy and childhood, once a general category
has been learned the “part_of” links between new object tokens can be induced by inter-category
“has_a” links. The mechanisms by which such link induction is implemented in humans remain to
be elucidated experimentally; we consider formal structures supporting this process below.

4.2 Mereological hierarchies as hierarchies of CCCDs

Let us first consider the Chu space C = (Cq, k¢, C,), where C, and Cj are sets of object tokens and
their corresponding singular categories and IF¢ is the “Identifies” relation in Fig. 6. Recall from
Fields and Glazebrook (2018| §3.1) the pair of maps (a,w) (there considered as a Galois connection)
given by:

a:P(Co) — P(Cy) with o(X) ={a:Vz € X, xlrc a}

. (4.1)
w:P(Cy) — P(C,) with w(A) ={z:Vae€ A, xlrc a}.

Here a clearly maps an object token to its (unique) singular category and w maps a singular
category to its (unique) object token. To generalize to the case of objects viewed multiple times,
and hence to singular categories linked to sequences of object tokens, we abuse the notation slightly
to allow C, to be a set of sequences of object tokens.

Definition 4.1.

(1) Suppose X is a set of subsets consisting of parts of objects. Then we define w o a(X) to be
the set of subsets of whole parts of objects as obtained from X.

(2) Suppose Y is a set of subsets consisting of parts of attributes. Then we define aow(Y') to be
the set of subsets of whole parts of attributes as obtained from Y.

Note that these definitions require the parts of an object (as represented by a sequence of object
tokens) to be both persistent and persistently parts of the object; hence they only approximate
situations in which an object can lose a part, without replacement, but still maintain its identity.
The usage “whole parts” is employed here to emphasize that “wholes” on one level may be “parts”
at the level(s) above.

Likewise, for a given classification we have A = (Tok(A), Typ(A),IF4) , and for a € X C
Typ(A),b € A C Tok(A), we have:

o : P(Typ(A)) — P(Tok(A)) with a*(X) ={b:Vae X, xlF4 b}

w* : P(Tok(A)) — P(Typ(A)) with w*(A) ={a:Vb € A, alF4 b}. (4.2)

Iterating these conditions allows us to move one rung at a time through the mereological hierarchy
when incorporating information channels.

To see how this mereological hierarchy can be constructed, we first of all construct a (quasi-
hierarchial) complex of CCCDs following and Recalling and drawing on the
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techniques of Distributed Systems of Barwise and Seligman (1997, §6) (cf. |[Fields and Glazebrook,
2018, §7.2), we may view the index i as indicating a ‘level’ in a complex of CCCDs constructed
from connected sequences. In such sequences, the time intervals will generally be distinct. Thus
we commence with families of time dependent logic infomorphisms arising from such morphisms
between different classifications as specified in (3.2)):

Ailtiy, ti,] — Bjltj tj,] (4.3)

at ‘levels’ 4, j (possibly j = i), each respecting the ‘parts’ to ‘wholes’ condition of . Both clas-
sifications lead to their corresponding diagrams as in Fig. 5c, as explained in with an induced
(logic) infomorphism C; — C; between the cocone vertex classifications of the corresponding
CCCDs derived from Fig. 5¢ (again, the time intervals are understood). Following the formalism
of we thus obtain induced (logic) infomorphisms:

Dgi[tiutin] — ng [tj17tjn]

4.4

Schematically, this leads to a typical, i.e. generic, quasi-hierarchial configuration as depicted in
Fig. 7 below. Note that the assumption of logic infomorphisms provides an underlying semantic
structure to the various mechanisms as discussed in §2 and

s % v
Dgw [twl ) twn] ng [t/ﬂ ) tkn] Dgf [tfl ) tfn] =< Dgp [tpl ) tpn] >
A e <o A
Dg,[tv,,tv,] Y Dg,,[tm, s tm,] < ng [t tan] >
Dgs [ts1,ts,] < Dgu [tus, tu,] < Dgr [try, tr,] >

Fig. 7: A typical complex of interactive CCCDs corresponding to a mereological object-
token hierarchy that is maintained over time. Note that by taking the Chu space
and Classification simplicial nerve construction of [Fields and Glazebrook| (2018) §5.4
-86,6), the above diagram admits an underlying simplicial complex to which a range of
simplicial methods (e.g. homotopies) can be applied.

The configurations depicted in Fig. 7 are not strictly hierarchial, even though the corresponding
colimits are iterated. Why such a configuration cannot be strictly hierarchial is clear: a part can
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be a part of many wholes, and even of wholes at different levels (for instance, an employee can be
part of a division, but also part of a company). As will be seen later, it is in this respect that a
mereotopological complex differs from a standard category-theoretic hierarchy in the sense of e.g.
Baas, Ehresmann and Vanbremeersch! (2004); ?. In particular, because of the existence of co-planar
complexes and bi-directional arrows, it is not always the case that that a relevant object of level
n + 1, say, is the colimit of at least one diagram at level n. However, somewhat in line with [Baas,
Ehresmann and Vanbremeersch (2004), we may also consider restrictions or extensions of such a
diagram that correspond to the “point of view” of an “observer” either internal the system or
external (e.g. the “environment” of the system), through which “selection” for coherence or some
other functional criterion induces the further levels of structure.

Lateral connections at each level of Fig. 7 indicate, e.g. probable co-occurrence in a scene.
Vertical arrows indicate mereological inclusions going upwards and top-down predictions from cur-
rent “understanding” or “prior probabilities” going downwards. These do not necessarily select the
same relations, as they often do not in real-life situations. Cocones exist in both directions in this
mereological structure: linked (time dependent) colimit cocones as underlying a typical CCCD,
and CCCDs as linked by a network of logic infomorphims ... — C; — C;31 — Cijypo —> ...
between the cocone vertex classifications (see [Fields and Glazebrook| 2018, §6.4, §8).

As a simplified example, consider the two-layer mereological network in Fig. 8. “Complexes”
here could consist of EL types such as [cat], [dog], [chair], etc. Each of these has many tokens that
are specific individual cats, dogs, tables, etc. The “part” level can include visually-identifiable,
but non-essential features of these types, such as “has four legs”, “has fur”, “walks with a gait
X7, “is white with brown spots”, etc. as well as essential features. There are also tokens at this
“part” level, e.g. four particular legs, a particular pattern of white-with-brown spots, etc. Cats,
dogs and chairs can all have four legs, but exemplars with fewer legs are also possible. Each “part”
token is linked to only a single “complex” token, e.g. a particular leg is a part of a particular cat,
dog or table, though as noted above this uniqueness would fail if more abstract complexes were
included. “Complex” types, and hence tokens, are related by co-occurrence links pertaining to
scenes (i.e. higher-level complexes); “part” types, and hence tokens, are related by co-occurence
links pertaining to complexes.
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“Complexes”

Fig. 8: A two-layer mereological network with “parts” at the lower level, and “com-
plexes” at the upper level. Each level comprises both tokens and types. Mereological
relations may be supported by only some exemplars (dashed lines).

“Learning” in the network of Fig. 8 would consist of: 1) associating altogether new lower-
and upper-level types into the network; 2) distinguishing new high-level individuals as clusters of
low-level tokens; 3) Convergence toward better predictions (i.e. all vertical arrows becoming bidi-
rectional). “Binding” in this system is associating a collection of upward arrows with an upper-level
token. “Abstraction” is the grouping of upper-level tokens into an upper-level type while preserving
all arrows. Previous work demonstrating general models of ANNs (Fields and Glazebrook, 2018,
§7.1) shows that such processes are allowed in principle; different specific choices of algorithms
for these processes would be expected to produce different hierarchical structures. Closely related
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is the robotics example of Lyubova, Ivaldi and Filliat| (2016) where a two-level representation is
constructed along these lines from the bottom up, including the correct association of tokens at
the “complex” level (representing a robot and an experimenter) with tokens at the “part” level
(representing the robot’s hand and the experimenter’s hand).

4.3 From mereology to mereotopology: Distinguishing objects by boundaries

The detection of edges and their extension into contours that segment an image into bounded,
non-overlapping regions is one of the earliest stages of visual processing (reviewed by Wagemans
et al) 2012a). What, however, distinguishes a two- or even three-dimensional array of bounded,
non-overlapping pattern elements — e.g. an array of colour or texture patches — from an array of
bounded, non-overlapping objects? As discussed in above, animacy, agency and independent
manipulability are important indicators of bounded objecthood during infancy and early childhood
when object categories are first being learned and populated with exemplars. What, however,
are the inferences that enforce boundedness for objects, and how does the constraint of having a
boundary affect the informational relations outlined above?

The key idea of mereotopology is that the parts of an object must be inside the object, i.e. con-
tained within its boundary (Casati and Varzi, |1999; Smith, [1996). This constraint is, clearly, more
easily satisfied for boundaries that are (at least approximately) smooth and convex. As simplicity
and hence resource efficiency appear to be general principles of perceptual system organization
(Wagemans et al., |2012b)), one can expect perceivers to “see” smooth, convex boundaries — e.g.
convex hulls of geometrically more complex objects — more easily. Imposing smoothness and con-
vexity — e.g. by constructing the convex hull of a geometrically more complex object (e.g. as in
Lyubova, Ivaldi and Filliat}, [2016)) — is a form of coarse-graining. We can, therefore, suggest that
constructing an “exterior” boundary around a collection of parts that then serves as a boundary
for the whole is a coarse-graining operation. Humans are, as noted in §2.2| above, highly accom-
plished at such boundary construction, especially for moving objects, with the ability to rapidly and
accurately identify point-light walkers and similar disconnected displays as a compelling example.
Static features are minimized by design in moving light displays such as point-light walkers in order
to specifically probe dorsal visual stream processing. As the dorsal stream does not “see” shape
(Flombaum, Scholl and Santos|, 2008), the “human-shaped” boundary in this case is imposed from
above, i.e. by the categorization process. Imposing this boundary coarse-grains the individually
erratic, but highly correlated, motion of the individual point lights into bounded object motion
from left to right or vice-versa. Inverting the display inhibits categorization and hence boundary
imposition, and is standardly used as a negative control (Johnson and Hannon|, 2015)). If boundary
construction is treated as coarse-graining, then the simplicial methods introduced in [Fields and
Glazebrook| (2018, §5) are immediately applicable, and indeed provide a general method of con-
structing object boundaries from the bottom up in any mereological hierarchy representable in the
CCCD form as in Fig. 7.

As noted earlier, a scene is a mereological complex; segmenting a scene by adding boundaries
makes it a mereotopological complex. At the “top” of the mereotopological hierarchy, a whole scene
can be considered a multilayer complex of simplicial complexes (i.e. identified “whole” objects) of
simplices (identifiable “part” objects). Recall from Fields and Glazebrook (2018) §5.1) that any
such complex, at any level of the hierarchy, has associated barycentric coordinates and a natural
metric. Distances within a simplicial complex at level n of the hierarchy, however, can also be
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viewed as distances between its component simplices at level n — 1. Boundaries, therefore, induce
geometric relations between the bounded objects. In this sense, perceived spatial relations can be
viewed as “emergent” from the distinctions between objects, a view with striking similarities to
recent proposals within fundamental physics (cf. [Fields et al., [2017)).

4.4 Channels, inter-object boundaries and interactions

The spatial separation between objects induced by their boundaries — and hence by their distin-
guishability — generates a time-dependent exchange of information and hence an interaction as this
term is traditionally understood. Again working from the top down in a mereotopological hierarchy
of simplicial complexes indentified with local classifications, every channel between classifications
at level n can also be viewed as a channel between the corresponding “objects”, i.e. simplicial
complexes. This channel corresponds to the boundary between the “objects” if they are adjacent,
i.e. if the corresponding simplicial complexes share (n — 1)-level faces. It is natural to think of
the information transmitted along the channel as “encoded on” this boundary, i.e. as encoded
holographically as this term is used in physics (Fields et al 2017). If the objects are not adjacent,
i.e. if the connecting channel is a composition at level n, the channel can be thought of as passing
through a shared “environment” interposed between the objects. The components of the composed
channel cannot in general be expected to be isomorphisms; hence the structure of this interposed
environment affects the interaction between the objects.

Perceiving object motion requires tracking the identity of the “moving” object through time;
hence it involves a temporal sequence of mereological hierarchies along the lines of Fig. 7. The
structure of the top-level scene is different at each time increment; hence the metric relations be-
tween component simplicial complexes is time-dependent. Changing the relative positions of objects
re-shapes their shared environment, in general altering the interaction between them. The distance
and material, e.g. transparency or electrical permittivity, dependence of physical interactions can,
therefore, be viewed as qualitatively “emergent” from the simplicial structure of classifications.

Coupling the perception of space and spatial relations, including distance-dependent interac-
tions, to mereological reasoning in this way generates strong predictions, particularly about devel-
opment and the consequences of damage. The representation of visual space and spatial relations is
increasingly seen as a hippocampal function in mammals, including humans (see [Moser, Kropff and
Moser, [2008; |Zeidman and Maguire, 2016, for reviews), coupling spatial representation anatom-
ically to the construction of scenes/events and the encoding of episodic memories (cf. Fig. 1).
While the architecture supporting this spatial representation is innate, the extent to which space
must be learned through non-specific experience during infancy remains unknown. The current
framework predicts that this hippocampal architecture also supports mereological reasoning, and
that non-specific experience of mereological relationships is essential to a fully-developed represen-
tation of space. It predicts, in particular, that mereological relationships are not encoded solely by
semantic memory systems, including the concept representation system implemented by ATP. If
this is correct, developmental variants such as autism that affect spatial perception can be expected
to also affect mereological reasoning; whether weak central coherence in autism (Happé and Frith,
2006) can be understood in this way remains to be determined. Hippocampal damage that affects
spatial orientation and reasoning, e.g. consequent to Alzheimer’s disease (Jicha and Carr, 2010)),
should similarly impact mereological reasoning. To our knowledge, correlational studies along these
lines have not yet been performed.
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4.5 Allocating attention to parts and wholes

Treating visual objects as multi-level mereological complexes consisting of parts and wholes raises
immediate questions regarding attentional control. Top-down, gestalt-oriented perceptual pro-
cessing can be expected to proceed from the top of the mereological hierarchy at which global
structures are encoded toward the bottom of the hierarchy where local details about parts are
encoded. Bottom-up, detail-oriented processing — the processing by which scenes are constructed
from local features such as edges and colours — proceeds in the opposite direction. Entry-level
objects, including both manipulable objects such as tools and social objects such as other people,
lie somewhere in between. It is such entry-level objects that are most familiar, most goal-relevant,
and most attractive of both dorsal and ventral attention. Attention can, therefore, be expected
to be captured at the entry level, while delaying response to both global and detailed “part” in-
formation. This convergence of attention is, in humans, a compromise between the right and the
left hemispheres, the left emphasizing information from higher spatial frequencies subserving an
analysis of localized detail with lessened perception of salience, and the right emphasizing lower
spatial frequencies subserving the more rapid global processing of information, heightened attention
to salience, and eventually, the over-riding holistic organization of scenes and events (Bar, 2004;
Kimchi, 2015). How this compromise plays out varies between individual perceivers and perceptual
contexts, as the Navon task (Navon, 1977)) and similar experiments demonstrate.

How human perception constructs the mereological complexes perceived as “whole” objects
above the entry level, and hence how mereological categories above the entry level are learned,
remains poorly understood. Such complexes lie, however, at the heart of social cognition, and their
accurate perception and interpretation were presumably critical to human evolution (see |Adolphs,
2009, for review). Social robotics clearly faces a similar problem in uncircumscribed material
and social environments. Whether gestalt principles for the integration of local information can
“emerge” heuristically from association measures such as probability or “simplicity” remains unclear
(Wagemans et al., 2012b)), as do criteria for the time persistence of mereological complexes. Local
elements of a hierarchial pattern are not, moreover, in general properties of the global form; they
are not necessarily parts of the whole in themselves. Thus a global processing advantage is not, per
se, an advantage of a global property of a visual object/event over its local properties, but rather
an attentional advantage of higher-level over lower-level processing. While autism provides cases in
which a global processing advantage systematically fails or never develops, the presumably-existing
functionally opposite population of individuals for whom perception is highly biased toward global
processing does not have a syndromic name and has not been systematically investigated.

5 Conclusion

In Part I of this work (Fields and Glazebrook, 2018)), we reviewed the rich set of tools that Chu
spaces and Channel Theory provide for investigating relationships between informational structures
and representing semantic information flows between such structures. These and other methods of
category theory have been applied widely in computer science, and are seeing increasing applications
in physics. As reviewed in Fields and Glazebrook! (2018)), applications of category theoretic methods
in the cognitive sciences — mainly in the investigation of ontologies and ontology convergence —
have mainly been carried out at a high level of abstraction. In this Part II, we have begun the
process of characterizing object perception in category-theoretic terms, particularly in terms of
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Chu spaces, classifications, simplicial complexes, and local logics, at the level of detail allowed
by empirical results of both cognitive and neurocognitive investigations. These formal methods
provide a natural and intuitively-clear representation of object perception as a multi-stage process
in which tokens at one level serve as types at a higher level. The cone — co-cone duality captured in
CCCDs is particularly useful as a representation of the bidirectional information flow employed by
the predictive coding systems that the brain appears to implement at multiple scales. Not only do
tokens at each scale become types at the next, low-level tokens also serve as “types” that organize
and impose consistency conditions on higher-level types, which serve as the “tokens” in this dual
relationship. Types and tokens thus play dual roles at each scale. We conclude, therefore, that
visual object perception can be considered scale-free in this sense, at least approximately and within
limits set by attentional and inferential abilities, and suggest that such a scale-free organization may
characterize cognition more generally. The analysis we present in §3|extends previous work on the
representation of ANNs by making this scale-independent CCCD duality explicit. It also makes
explicit the essential role of inferences of FCHs — here captured as infomorphisms — in tracking
object identity through time.

Human beings, and presumably other animals with relatively complex cognitive systems, employ
both abstraction and mereological hierarchies to categorize objects. We showed in §4|that networks
of time-indexed CCCDs provide a natural representation of the mutually-constraining relationship
between these two categorization methods, particularly as they are employed in object-identity
tracking. We then explored briefly the emergence of spatial relationships and interactions between
objects from their description as simplicial complexes embedded in the larger simplicial complex
that constitutes a perceptual scene. This emergence-based approach to mereotopology differs sig-
nificantly from previous approaches that are geared toward a priori specification of ontologies (Lé
and Janicki, [2008; [Smith) 1996)). It is worth noting that our categorical analysis of mereological
reasoning, or of perception in general, makes no claims about the nature of consciousness and
does not commit the “mereological fallacy” of attributing human-scale psychological properties to
neurocognitive components (Bennett and Hacker, [2003). Indeed it shows why such a fallacy is a
fallacy: what is scale-free in a CCCD is not any particular attribute, but the multiple roles played
by the satisfaction relation I linking within-scale types and tokens.

This initial foray into the categorical representation of cognitive processes at depth raises a
number of questions and illuminates several open problems. One of the deepest is whether the
satisfaction relations IF operating between tokens and types at any of the processing levels considered
here are well-defined. While it must be assumed that they can be defined formally to develop
models, it remains possible that “IF”’ is token, type, context, or time dependent, as studies of
the dependence of language on unspecified “background knowledge” (Searle, 1983)) or of cognition
generally on “embodiment” (Anderson, 2003; (Chemero, 2013) might suggest. If this is the case,
there are no formally-specifiable criteria for either object persistence or mereological composition,
and any proposed criteria must be viewed as purely heuristic. Problems that require further
work include: 1) the implications of the present results for the representation of ontologies and
particularly for ontology convergence between agents that have encountered non- or only partially-
overlapping collections of individual objects, 2) the extent to which local logics define or constrain
semantic relations between either tokens or types, 3) the extent to which cognitively-significant
differences in spatial scale can be captured by coarse-graining, and 4) the question of why the
geometry emergent from human visual perception should be three-dimensional. There also remains
the open question of how cognition is affected when one or the other of the categorization systems
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breaks down, as appears to be the case with the mereological system in autism where a sense of
context, and an overall gestalt in certain situations may be adversely impacted (Happé and Frith,
2006]).
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