
1 of 25

Cognitive Processing (in press)

Metaphorical motion in mathematical reasoning: Further evidence for pre-motor implementation 
of structure mapping in abstract domains

Chris Fields

815 East Palace Ave. #14
Santa Fe, NM 87501 USA

fieldsres@gmail.com

Abstract:

The theory of computation and category theory both employ arrow-based notations that suggest that the 
basic metaphor “state changes are like motions” plays a fundamental role in all mathematical reasoning 
involving formal manipulations.  If this is correct, structure-mapping inferences implemented by the 
pre-motor action-planning system can be expected to be involved in solving any mathematics problems 
not solvable by table look-ups and number-line manipulations alone.  Available functional imaging 
studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with 
this expectation.
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Introduction

In the dozen years since the publication of Where Mathematics Comes From: How the Embodied Mind 
Brings Mathematics Into Being (Lakoff & Núñez, 2000; see also Núñez & Lakoff, 2005), the idea that 
mathematical reasoning is “embodied” in the sense of being implemented, at least in part, by areas of 
parietal cortex also involved in the representation of bodily position, orientation and movement has 
received increasing empirical support.  Based on a review of then-available functional imaging results, 
Dehaene, Piazza, Pinel and Cohen (2003) proposed an influential model of numerical calculation that 
localized a mental “number line” to the horizontal intraparietal sulcus (HIPS), memory access for 
numerical symbols to the left angular gyrus (AG) and attentional management for calculation to the 
posterior superior parietal lobule (SPL).  Although not all have focused on the same set of regions of 
interest, subsequent functional-imaging studies have refined and extended this model for tasks 
including non-symbolic numerosity judgments (Cantlon, Brannon, Carter & Pelphrey, 2006), arithmetic 
(Rosenberg-Lee, Lovett & Anderson, 2009; Landgraf, van der Meer & Krueger, 2010), algebra (Qin, 
Carter, Silk, Stenger, Fissell, Goode & Anderson, 2004; Danker & Anderson, 2007), geometry 
(Wartenburger, Heekeren, Preusse, Kramer & van der Meer, 2009; Preusse, van der Meer, Deshpande, 
Krueger & Wartenburger, 2011) and even calculus (Krueger, Spampinato, Pardini, Pajevic, Wood, 
Weiss, Landgraf & Grafman, 2008).  While these studies all demonstrate the involvement of parietal 
cortex in mathematical reasoning, however, both the roles played by specific areas and the functional 
relationships between parietal and frontal excitations during mathematical reasoning remain unresolved 
(Cohen Kadosh & Walsh, 2009; Butterworth, 2010; Piazza, 2010; Anderson, Betts, Ferris & Fincham, 
2011).

In contrast to the intensive investigation of the “embodied” aspect of mathematical reasoning, the 
second major claim of Lakoff and Núñez (2000), that mathematical reasoning is essentially 
metaphorical, has received less sustained attention.  Mowat and Davis (2010) suggested that the 
mathematical metaphors proposed by Lakoff and Núñez (2000) can be understood as nodes in a larger 
network of natural-language metaphors, and outlined pedagogical approaches to improve mathematical 
understanding by decreasing student reliance on metaphors that are not universally applicable.  Mowat 
and Davis (2010) did not discuss the cognitive or neurocognitive implementation of either the specific 
metaphors proposed by Lakoff and Núñez (2000) or the larger network described as containing them. 
Independent investigations of the understanding of natural-language metaphors have, however, shown 
that the processing of novel metaphors in particular activates temporal and parietal areas also involved 
in motion and action representation (Mashal, Faust, Hendler & Jung-Beeman, 2007; Aziz-Zadeh & 
Damasio, 2008; Desai, Binder, Conant, Mano & Seidenberg, 2011).  While the transition from more 
“embodied” to more “abstract” representations as metaphors become conventionalized remains to be 
worked out (Chatterjee, 2010; Schmidt, Kranjec, Cardillo & Chatterjee, 2010; Kiefer & Pulvermüller, 
2012), these results are consistent with a representation of mathematical metaphors by cortical areas 
known to be involved in mathematical reasoning.  

Lakoff and Núñez (2000) described mathematics as based on four “grounding metaphors” that define 
basic arithmetic together with a collection of “linking metaphors” that generate more abstract areas of 
mathematics from arithmetic.  The two primary grounding metaphors are that numbers are like 
collections of objects and that arithmetic operations are like object-construction operations; these are 
supplemented by two additional grounding metaphors, that numbers are like lengths and arithmetic 
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operations are like motions along a line.  The linking metaphors are more subtle: the first one 
introduced by Lakoff and Núñez (2000, p. 107 ff) is that an algebraic structure is like a Platonic 
essence.  Analytic geometry is introduced, as it is in many classrooms, by the linking metaphor that 
numbers are like points on a line.  This distinction between grounding and linking metaphors in 
mathematics corresponds, at least in some cases, to the distinction between “groundedness” and 
“embodiedness” advanced by Fischer (2012): the grounding metaphors of Lakoff and Núñez reflect 
“universal constraints in cognition that express invariants in the physical world” (Fischer, 2012, p. 162) 
such as the facts that larger collections of objects really do have more elements and that combining or 
dividing collections of objects really do change the numbers of elements that they contain.  While it is 
unclear how the notion that an algebraic structure is like a Platonic essence might be “embodied” – 
aside from in the trivial sense of being implemented by some neurocognitive representation or other – 
the linking metaphor of numbers being like points on a line appears to be embodied, at least in the case 
of small (i.e. few-digit) positive integers, in Fischer's sense of “reflect(ing) sensory and/or motor 
constraints of the human body” (2012, p. 163), in particular the linear, typically left-to-right sweep of 
visual gaze and the fact that humans have left and right hands with fingers available for counting 
(Fischer & Brugger, 2011). 

Lakoff and Núñez present the distinction between grounding and linking metaphors as corresponding 
to the distinction between simple arithmetic and “higher” mathematics: algebra, geometry and their 
more abstract derivatives and extensions.  What separates the two in conventional mathematical 
pedagogy is significant: it is the learning of mathematical facts and rules, often by rote memorization, 
with the learning of multiplication tables being a canonical example.  Lakoff and Núñez discuss 
multiplication in terms of the intuitive operations of pooling multiple collections of the same size and 
then counting the number of objects in the pooled collection, and they relate this pooling operation to 
successive addition, but they do not reflect explicitly on the practice of memorizing times tables.  Both 
lesion and imaging data, however, indicate differences between the implementations of primarily 
number-line dependent operations such as subtraction and primarily fact-retrieval dependent operations 
such as multiplication (Dehaene et al., 2003).  One can ask, therefore, how the grounding metaphors of 
Lakoff and Núñez (2000) relate to mathematics not just in theory, but as typically learned and 
practiced.  Relevant to this question is that of how the grounding metaphors are themselves 
implemented, and whether and how the implementation of the grounding metaphors differs from the 
implementation of the linking metaphors.  Lakoff and Núñez characterize metaphor as a “neurally 
embodied fundamental cognitive mechanism” (2000, p. 351), but do not address this question of 
implementation.

The implementation of one of the grounding metaphors of Lakoff and Núñez (2000) is reasonably well 
understood: considerable data now support the implementation of “numbers are like lengths” – again, 
at least in the case of small positive integers – by HIPS.  The HIPS “number line” appears to support 
both mental arithmetic and number comparison (Dehaene et al., 2003) as well as non-symbolic 
numerosity judgments (Cantlon et al., 2006).  A linear representation of numerical magnitudes 
extending along a horizontal anatomical axis in close association with motor representations would 
provide a natural explanation for both the operational momentum effect in number estimation (small 
numbers are underestimated while large numbers are overestimated; McCrink, Dehaene & Dehaene-
Lambertz, 2007; Knops, Viarouge & Dehaene, 2009) and the spatial-numerical association of response 
codes (SNARC) effect (small numbers are associated with left-hand space while larger numbers are 
associated with right-hand space; Wood, Willmes, Nuerk & Fischer, 2008), although neither of these 
effects have been shown to be directly implemented by HIPS.  It is unclear, however, whether HIPS 
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serves only as a “mental number line”; Krueger et al. (2008) observed HIPS activation when subjects 
were asked to determine whether integral equations had been solved correctly, an operation sometimes 
requiring the manipulation of numbers as coefficients or exponents but not obviously involving 
“number line” reasoning.  How the “numbers are like lengths” metaphor is related to the other 
grounding metaphors of Lakoff and Núñez (2000) is similarly unclear.  How, for example, does 
“numbers are like collections of objects” relate, at the implementation level, to “numbers are like 
lengths”?  The cross-cultural practice of finger counting appears to be the developmental origin of the 
SNARC effect (Fischer & Brugger, 2011); how are the numbers learned by this method, or by 
parentally-encouraging counting of objects into or out of other kinds of containers, associated with the 
linear representation implemented by HIPS?  Finally, it remains unclear how the linking metaphors of 
Lakoff and Núñez (2000) relate to the grounding metaphors.  How, for example, do the manipulations 
represented by mathematical formulas – in the simplest case, the “carry” operations of multi-digit 
arithmetic – relate at the implementation level to the basic arithmetical operations, and how is this 
relationship enabled or strengthened by formal instruction?  

The present paper advances two hypotheses.  The first is that the cognitive processes involved in 
“higher” mathematics, from the manipulation of formulas in introductory algebra and shapes in basic 
geometry to more abstract, expert-level manipulations of mathematical objects and relations, can be 
represented in terms of structure mapping, a general inferential procedure that preserves relational 
similarities among representations of objects or events and that underlies analogical reasoning 
(Gentner, 1983; 2003; Markman & Gentner, 2001; Holyoak, 2005).  As shown below, the formal 
structures of two fully-general representations of mathematical reasoning, the classical theory of 
computation and category theory, both support this hypothesis.  Formal structure alone, however, does 
not determine implementation.  The second hypothesis of the present paper is that the diverse results 
indicating parietal involvement in higher mathematics can be understood within a model in which 
structure-mapping processes that implement mathematical reasoning are themselves implemented by 
the pre-motor action-planning system with goal management and attentional control provided by a 
prefrontal-cingulate loop.  A pre-motor implementation of structure mapping has previously been 
proposed as a model of tool-improvisation capabilities in both humans and non-human animals (Fields, 
2011) and of human analogical-reasoning capabilities in domains involving motions and forces (Fields, 
2012).  In the model proposed here, mathematical reasoning is considered to be an abstraction from 
reasoning about object manipulation, and hence to involve metaphorically-expressed abstractions of 
both motion and applied force or effort.  This view of mathematical reasoning as implemented by pre-
motor structure mapping is consistent with an emerging view of the pre-motor system as a domain-
general planning system (Schubotz, 2007; Bubic, von Cramon & Schubotz, 2010) involved 
ubiquitously in problem solving.

The next section, “Formal representations of structure mapping in mathematics” examines the virtual 
machine concept developed within the theory of computation and the functor concept developed within 
category theory.  It shows that these fully-general representations of mathematical reasoning can both 
be viewed as representations of structure mapping as defined by Gentner (1983), although both the 
virtual machine and functor concepts predate Gentner's work by several decades.  The criterion of 
emulation by a virtual machine and the criterion of commutativity of a mapping diagram relating two 
or more categories are shown to be strong forms of Gentner's criterion of systematicity for structure 
mappings.  The third section, “Metaphorical motion in formal models of computation” shows that both 
the theory of computation and category theory are based on the assumption that irreducibly simple 
motions not only represent but physically implement the most elementary mathematical operations. 
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The fourth section, “Pre-motor implementation of metaphorical motion” reviews functional-imaging 
studies of both mathematical reasoning and non-mathematical analogies.  It shows that the available 
data are consistent with a pre-motor implementation of structure mapping in mathematical reasoning, 
and suggests that a functional-imaging study of category-theoretic “diagram chasing” would contribute 
to resolving this question.  The paper concludes that the semantic analogy capability most studied in 
analogy research may itself be an analog of a far older, pre-motor capability for motion-based 
analogical reasoning.  It suggests that what is hard about mathematics may not be mathematical 
reasoning itself, but rather the translation of problems into the motion-based representation that human 
mathematical cognition appears to employ. 

Formal representations of structure mapping in mathematics

Mathematics as implemented by structure mapping

Structure mappings are inferences from one object or event to another object or event that identify and 
preserve the relational structure shared by the two objects or events (Gentner, 1983; 2003; Markman & 
Gentner, 2001; Holyoak, 2005).  To employ a canonical example, to say that atoms are like the solar 
system because the orbits of electrons around the nucleus are like the orbits of planets around the sun is 
to perform a structure mapping (Falkenhainer, Forbus & Gentner, 1989).  While Lakoff and Núñez 
(2000) do not use the term “structure mapping” and do not reference the structure-mapping literature, 
they present both the grounding and linking metaphors proposed to underlie mathematics, and indeed 
present “conceptual metaphors” in general, as structure mappings: mappings from a “source” domain to 
a “target” domain that map objects and relations within the source domain to objects and relations 
within the target domain in a way that identifies and preserves relational structure (p. 39 ff).  An explicit 
representation of the “numbers are like collections of objects” grounding metaphor of Lakoff & Núñez 
(2000) as a hierarchy of progressively more abstract structure mappings is shown in Fig. 1.  These 
structure mappings preserve the relation “Add 1”; they also preserve other, implicit relational facts 
common to the four actions shown, for example, the fact that adding another “object” to a “collection” 
is assumed, in every case, to be without side effects that alter the number or kinds of objects already in 
the collection.  The most basic of these structure mappings (Fig. 1a) simply implements generalization; 
that such basic structure mappings are non-trivial and hence interesting from an implementation 
perspective is demonstrated by the fact that they can fail, for example when the “wrong” container for a 
particular kind of object is rejected by an autistic child.  As Lakoff and Núñez (2000) propose that all 
of mathematics rests on the grounding and linking metaphors they present or on others like them, they 
effectively propose that all of mathematics is implemented, algorithmically, by structure mapping.  This 
is an empirical proposal, and one can ask whether it is true.  One can also ask whether a particular 
implementation of the structure mappings proposed to implement mathematics is suggested by the 
available data.  It is these questions that are considered below.

*****
Fig. 1 about here.
*****

A structure mapping is useful to the extent that it is systematic, i.e. to the extent that the relations that it 
preserves are the important, informative and hence potentially inferentially-productive relations within 
both the source and target domains.  “Good” analogies are distinguished from “bad” analogies by 
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systematicity (Gentner, 2003; Holyoak, 2005); “bad” analogies lack systematicity, and are therefore 
uninformative or misleading.  While the systematicity of informal or literary analogies is generally a 
matter of intuitive conceptual coherence, the systematicity of analogies involving physical forces and 
motions, such as those involved in improvising tools, is a matter of quantitative scaling; such force-
motion analogies are directly tested, and must actually work, when put into practice in the real world 
(Fields, 2011).  Structure mappings may in some cases appear to be systematic, but in fact be – or be 
discovered to be – not systematic; the canonical “Rutherford” analogy from electron orbits around the 
nucleus to planetary orbits around the sun is, in fact, not systematic because electrons do not actually 
orbit the nucleus, and treating them as doing so leads to empirical contradictions (Fields, 2012).  The 
grounding metaphors – or grounding analogies – of arithmetic proposed by Lakoff and Núñez (2000) 
do not require empirical testing, as they are systematic by definition.  In these analogies, the target 
domains are cognitive constructs in which the only relevant relations are those defined by structure 
mappings from the source domains.  Where the grounding metaphors conflict, as in the case of 
operations involving negative numbers, the conflict is due to dis-analogies between the source domains 
themselves (Mowat & Davis, 2010).

Recognizing that the statement of a mathematical problem “matches” a known formula and hence can 
be solved using a known manipulation of that formula clearly involves structure mapping; 
systematicity is satisfied if the translation of the problem statement to the known formula is in fact 
correct.  For example, if we are told that Alice's house is one km north and three km west of Bob's 
house, we can calculate the distance from Alice's house to Bob's using the formula a2 + b2 = c2 that 
expresses the Pythagorean theorem.  This calculation will be correct provided that Euclidean geometry 
holds in the world containing Alice's and Bob's houses, and provided that by “distance” we mean 
shortest straight-line distance.  Such translation is relatively easy if the problem is stated using the same 
formalism employed in the known formula; in this case, structure mapping is syntactic pattern 
matching.  If the problem is stated in a different formalism, or in natural language as with the example 
above or the notorious “word problems” of school arithmetic, performing such structure mappings 
correctly can be considerably more difficult.  Most students learn long division, basic algebra and 
beginning calculus by learning and applying formulas.  As mathematical reasoning becomes more 
expert, however, it relies less on learned formulas and looks less like syntactic symbol manipulation; an 
artfully-constructed proof is a conceptual exercise in which the chosen syntax plays the role it plays in 
an artfully-constructed poem.  This is, indeed, the point that Lakoff and Núñez (2000) are making in 
their discussion of the concepts underlying Euler's famous formula eiπ = -1.

The notion of mappings between structures is, of course, itself a mathematical notion; the centrality of 
the concepts of “structure” and “mapping” within mathematics by itself lends credence to the idea that 
mathematics is a network of structure mappings.  The remainder of this section considers two 
formalizations of the notion of structure mapping within expert-level mathematics, both of which 
incorporate explicit definitions of systematicity, and both of which significantly predate the 
characterization of structure mapping as an algorithm for analogical reasoning by Gentner (1983).

Virtual machines and emulation

The classical theory of computation rests on two foundations: a set of strictly-equivalent formal models 
of computation exemplified by the Turing machine, and a universality claim, the Church-Turing thesis, 
that states that any process that intuitively “counts” as computation can be represented as a 
computation using any one of the formal models (Turing, 1937; Hopcroft & Ullman, 1979 is a standard 
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reference; Galton, 2006 reviews recent controversies surrounding the Church-Turing thesis).  One 
implication of the Church-Turing thesis is that any intuitively “computational” process that can be 
implemented on any one formal model of computation can also be implemented on any other formal 
model of computation.  It is this implication of the Church-Turing thesis that allows programs written 
using different formal models of computation – i.e. different programming languages – to be regarded 
as alternative implementations of the “same” computation; the Church-Turing thesis is thus crucial to 
the practice of programming.

Early computers were programmed by interacting directly with the hardware.   The development of 
programming languages interposed a layer of software between the programmer and the hardware, 
allowing programs to be written in a way that was at least approximately hardware-independent.  Since 
the early 1970s it has become commonplace to interpose sufficient software between a computer's 
hardware and the software tools employed by application programmers that programs can be made 
fully hardware-independent, i.e. portable.  Such interposed software constitutes a virtual machine – a 
specified software system that a programmer can treat as if it were a physical machine when writing 
application software (Goldberg, 1974; Tanenbaum, 1976).  The virtual machine “model” of 
computation frees programmers from having to know anything about the hardware on which their 
programs will run; it renders the Church-Turing thesis true in practice for programmers.  From the 
perspective of a computer's users, application software packages can themselves be considered virtual 
machines.  A laptop running a web browser, for example, can be considered to be a web-browsing 
machine; the user needs not know anything about what the laptop is doing at the hardware, the 
operating-system, or even the application-software level to successfully browse the web.  Users of 
“cloud” applications on the internet need not know what kind of computer is running the application, or 
even where it is located; from the user's perspective, it is as if a distinct, specialized computing 
machine implemented each of their applications.

A “virtual” process – such as web browsing – running on a virtual machine is related to the physical, 
i.e. electronic or possibly optical process running on a computer's hardware by emulation: the 
programmed hardware behaves as if it were a specialized machine constructed to execute the virtual 
process.  Successful emulation serves as a criterion for the correctness of a virtual-machine 
implementation.  One can, therefore, represent the mapping from a physical process occurring in the 
hardware to a virtual process occurring in a virtual machine implemented by the hardware as a structure 
mapping in which systematicity is strictly defined by the criterion of emulation; Fig. 2 shows such a 
representation.  In this representation, a non-systematic structure mapping between hardware and 
virtual machine is a program with bugs – a program that does not, in fact, do what it is supposed to do. 
If viewed in reverse, a systematic emulation mapping defines a correct semantic interpretation of the 
behavior of the hardware as the behavior of the virtual machine, i.e. as a coherent, intuitively-
meaningful computation.  If the hardware is an internally-uncharacterized “black box” or a naturally-
occurring system such as a brain, an independently-verified emulation mapping may be viewed as an 
explanation of the behavior of the hardware (Marr, 1982; Cummins, 1983).  From this perspective, the 
“grounding metaphors” of Lakoff and Núñez (2000) can be considered to be statements of emulation 
relationships between abstract mathematical processes and biochemical or bioelectrical processes in 
brains that are proposed as explanations of human mathematical-reasoning capabilities.

*****
Fig. 2 about here
*****
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By allowing any computational process P executed by a given hardware system to be considered to be 
equivalent to an execution of P on any formal model of computation, the Church-Turing thesis allows 
the emulation relationship between hardware and virtual machine to be considered as a special case of a 
general emulation relationship between two virtual machines, i.e. between two purely formal, 
mathematical entities.  This general relationship defines a precise sense, representable as in Fig. 2, in 
which one mathematical process is “like” another, or can be regarded as an “interpretation” or “model” 
of another.  This generalized sense of emulation provides the basis for the “denotational” approach to 
programming-language semantics (Stoy, 1977).  From this perspective, programs are “models” or 
“implementations” of computational processes in the precise sense of being structure-mapping 
analogies of those processes with emulation as the criterion of systematicity.

Categories, functors and diagram commutativity

The mathematics of category theory generalizes the methods employed in abstract algebra and 
algebraic topology to investigate the relationships between different mathematical systems (Eilenberg 
& Mac Lane, 1945; Mac Lane, 1972 is a standard reference; Adámek, Herrlich & Strecker, 2004 is an 
accessible introduction).  A mathematical category is a collection of objects and a collection of arrows 
(or “morphisms”) such that: (1) for each pair of objects A and B there is at least one arrow f: A → B and 
for each object A there is an “identity” arrow iA: A → A; (2) any two arrows f: A → B and g: B → C can 
be composed (indicated by “◦” and read “following”) to form a new arrow g◦f: A → C; and (3) this 
process of composing arrows satisfies the associative law of conventional arithmetic.  Conventional set 
theory and hence all of conventional mathematics can be represented in terms of objects and arrows 
within category theory.

Categories are related by functors.  A functor is a family of functions that map both the objects and the 
arrows of some category A to the objects and arrows of another category B in a way that preserves 
identities and arrow composition.  The action of a functor F: A → B is conventionally illustrated by a 
diagram such as shown in Fig. 3.  A diagram in which all paths from one object to another are 
equivalent is commutative; for example, if f◦F = F◦g for every f in A and g in B in Fig. 3, the diagram 
commutes.  If two categories can be related by one or more functors that yield commutative diagrams, 
they share potentially inferentially-productive structural commonalities; categories that cannot be 
related by diagrams that commute lack such commonalities.  Mapping the real numbers with addition 
as an operation to the real numbers with multiplication as an operation, for example, is inferentially 
productive: it reveals that zero and one are functionally analogous as identity elements, and gives rise 
to the mathematics of exponents and logarithms.  Many of the questions addressed by category theory 
turn on the issue of whether a diagram relating categories commutes; hence “diagram chasing” is a 
preferred and often straightforward category-theoretic proof technique.

*****
Fig. 3 about here.
*****

The diagrams shown in Fig. 3 are transparently structure mappings in which systematicity is assured if 
the diagrams commute.  Indeed, category theory can be viewed as a mathematical theory of structure 
mapping, where the structures in question represent mathematical systems in the most general possible 
way.   Viewed in this way, what category theory tells us is that the relationships between mathematical 
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systems that “make sense” are the ones that can be represented as structure mappings with diagram 
commutativity as the criterion of systematicity.  Mathematical systems that cannot be related by 
commutative diagrams are “bad analogies” for each other: they do not share interesting structure, and 
working between them is unlikely to be inferentially productive.  As in the case of the Church-Turing 
thesis, this is a claim about how our mathematical intuitions – how what counts as “interesting” in 
mathematics – can be captured within a formalism.

The virtual-machine concept and the programming languages that support it, category theory with its 
commutative diagrams, Feynman diagrams representing interactions in particle physics, and flow 
charts representing the transfer of information or control between components of a complex system all 
have the same underlying formal structure (Baez & Stay, 2011) and were all developed in the mid-20th 

century, at a time when it became both conceptually and technologically possible and economically and 
militarily necessary to perform mathematical calculations of a previously-infeasible complexity.  These 
forms of diagrammatic calculation all employ strict criteria of systematicity; while these criteria are 
implicit in Feynman diagrams and flow charts, they can be made explicit by considering either of these 
representations as depicting virtual machines.  While diagrammatic reasoning is a relatively new 
research field within cognitive psychology (Larkin & Simon, 1987; Richards, 2002; Gottfried, 2012), 
several generations of mathematicians, computer scientists, physicists and engineers have demonstrated 
that diagrammatic representations of complex computations are far easier to understand and employ to 
obtain practical results than are their purely-linguistic equivalents.  As Larkin and Simon (1987) 
emphasize, a diagrammatic presentation typically reduces the search time required to solve a problem, 
and solutions to problems presented by diagrams can sometimes be recognized in the course of 
understanding the diagram; “diagram chasing” as a solution strategy exploits this fact.  The next two 
sections outline a model of why this should be so.

Metaphorical motion in formal models of computation

The arrows in Figs. 2 and 3 are enough to suggest that motion plays a significant role in diagram-driven 
mathematical reasoning.  Moving something from one place to another changes its state (in particular, 
its location); it also changes both the context originally occupied by the object and the context into 
which the object is introduced.  Object motion thus implements state change both for objects and for 
contexts involving multiple objects.  The “numbers are like collections of objects” grounding metaphor 
of Lakoff and Núñez (2000) exploits this fact: moving an object from one collection to another is both 
a physical and a numerical operation.  

The arrows in Figs. 2 and 3 also, however, capture a second deep metaphor: the locational state change 
physically implemented by a motion can be employed to represent any state change that can be 
explicitly imagined as an event.  Lakoff and Johnson (1999) call the representation of general processes 
by motions the “event-structure metaphor”; Lakoff and Núñez (2000) employ it in their discussion of 
infinity.  The diagrammatic representations employed in computing theory and category theory suggest 
that this metaphor is in fact a grounding metaphor for all of mathematics, one that is both logically and 
architecturally even more basic than “numbers are like collections of objects.”  They suggest, in other 
words, that “state changes are like motions” is the fundamental metaphor driving mathematics.

Motions are able to represent processes because motions implement processes; this is an “invariant in 
the physical world” and hence confers “groundedness” on such representations in Fischer's (2012) 
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sense.  Lakoff and Núñez (2000) emphasize the simplicity of the motions implementing such 
developmentally-early arithmetic processes as counting on the fingers or moving objects into and out of 
some designated space.  The notion that computational processes can be broken down into simple 
motions is generalized by the Turing machine, in which the irreducibly simple motions of marking, 
erasing, and moving along the tape are made to represent all possible computations.  Most 
contemporary computers involve a similar generalization, again guided by the Church-Turing thesis, 
that substitutes the flow of electrical current for the motion of discrete objects.  The somewhat 
pejorative notion that computation is “just pushing symbols around” – a notion made famous by 
Searle's (1980) “Chinese Room” argument against artificial intelligence – expresses the same 
generalization.  From this perspective, the syntactic operations involved in manipulating formulas can 
be considered to be state transitions within a space of language-like formal representations that are 
implemented by a specified set of simple motions of well-defined symbols.

The simplicity of elementary mathematical operations, and indeed the goal of discovering small sets of 
irreducibly simple operations that are arbitrarily inferentially productive within a chosen domain are 
distinguishing features of mathematics (and mathematical physics) as cognitive activities.  Irreducibly 
simple mathematical operations are meant to be obvious; as algebraic topologist Burt Casler (1927-
2012) was fond of saying, a mathematician's job is “to turn impossible problems into trivial problems.” 
In both the theory of computation and category theory, the irreducibly simple operations can be viewed 
as irreducibly simple motions: marking, erasing or moving along the tape, or simply following an 
arrow from one object to another.  The centrality of this idea of an irreducibly simple motion to 
mathematics is reflected in the centrality of arrow composition as the sole operation assumed within 
category theory.  If any arrow can be regarded, at least notionally, as a composition of arrows 
representing irreducibly simple motions, then the theory needs not concern itself with what the arrows 
are, and hence can focus exclusively on how arrows can be sequentially combined.  The theory 
similarly needs no assumptions about what the objects are; it is enough that they are whatever the 
manipulations represented by the arrows manipulate.  Indeed as Adámek, Herrlich and Strecker (2004) 
emphasize early in their presentation (p. 42, Remark 3.55), category theory can be fully formulated 
with no notion of “object” at all.  It is, therefore, not incorrect to claim that from the idea of an 
irreducibly simple motion and the notion that such motions can be sequentially composed, all of 
mathematics follows.  That the number of distinct arrows required to formulate a non-trivial object-free 
category theory – three – is the same as the number of elementary operations of a Turing machine 
serves to emphasize this conclusion.

Pre-motor implementation of metaphorical motion

Hypothesis: Structure mapping in mathematics is implemented by event-file manipulation

In the closing of their paper, Larkin and Simon (1987) speculated that diagrammatic reasoning in which 
the diagrams were merely imagined would be essentially equivalent to diagrammatic reasoning using 
external, observed diagrams.  Subsequent experimental investigation of both visual imagination 
(Kosslyn, Thompson & Ganis, 2006; Moulton, S. T. & Kosslyn, 2009) and episodic-memory retrieval 
(Moscovitch, 2008; Ranganath, 2010) has confirmed this speculation: up to modulation by the rostral 
prefrontal “reality monitoring” system (Simons, Henson, Gilbert & Fletcher, 2008), perception and 
imagination activate the same object and motion representations in temporal and parietal cortex.  As 
representations of objects moving within a context are representations of events, Hommel (2004) has 
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termed such activations “event files.”  To the extent that mathematical reasoning involves either 
perceived or explicitly-imagined sequences of motions or manipulations, one would expect such 
reasoning to be implemented by sequential processing of event files.

It has been shown previously that structure-mapping analogies involving forces and motions that are 
performed in the course of tool improvisation (Fields, 2011) or even abstract physical reasoning 
(Fields, 2012) can be represented as manipulations of event files implemented by the pre-motor action-
planning system.  In both of these cases, structure mapping results in the construction of a novel action-
sequence representation that combines components of previous action sequences, with the forces 
applied scaled to produce the motions required.  The action plans constructed by tool-improvisation 
structure mappings represent the body as actor and are executable as tool-use actions.  The action plans 
constructed by physical-reasoning structure mappings employ the body as a metaphorical 
representation of some external object, and constitute predictions of that object's future behavior. 
These latter structure mappings are thus critically dependent on the ability of the mirror system, in 
particular mirror components of SPL (Nassi & Callaway, 2009), to respond to motions of observed or 
imagined inanimate objects (Schubotz & von Cramon, 2004; Engel, Burke, Fiehler, Bien & Rosler, 
2007; Catmur, Walsh & Heyes, 2007; Heyes, 2010; 2012) and hence to represent the motions of such 
objects as force-carrying actions.

While the formal structures of both the theory of computation and category theory support Lakoff and 
Núñez's (2000) contention that all mathematical reasoning is based on metaphorical motion and hence 
implementable by structure mapping, reflection on such phenomena as the memorization of times 
tables suggests that this possibility is not realized as a matter of fact: some mathematical reasoning, 
such as the inference from '2 · 2' to '4', appears to be implemented, at least in many individuals, by table 
lookup.  The HIPS number line appears, moreover, to serve as an at least somewhat specialized 
processor of numerical order and magnitude, at least for few-digit positive integers.  One can 
hypothesize, however, that the rest of mathematical reasoning, including formula manipulation, 
geometric reasoning, and the more abstract reasoning of expert-level mathematics, is implemented by 
the same kinds of pre-motor structure-mapping processes that appear to implement tool-improvisation 
and physical-reasoning analogies.  If this hypothesis is correct, the primary role of memory retrieval in 
mathematical reasoning is similar to its primary role in physical reasoning: it provides facts, often in 
the form of templates such as abstract diagrams or formulas, for input into structure-mapping 
processes.  That this hypothesis is at least plausible is suggested by the very similar usage of diagrams 
in mathematical and physical reasoning and by the structural similarities between the diagrams 
employed.  Indeed, a single neurocognitive mechanism for both mathematical and physical reasoning 
would go a considerable way toward explaining the “unreasonable effectiveness of mathematics in the 
natural sciences” emphasized by Wigner (1960).

If structure mapping in mathematical reasoning is implemented by the pre-motor action planning 
system, direct neurofunctional assays such as fMRI or transcranial magnetic stimulation (TMS) would 
be expected to reveal specific activations in anatomically-distinct components of this system during 
mathematical reasoning or problem solving.  Specifically, one would expect manipulations of 
mathematical entities to elicit posterior parietal and possibly supplementary motor cortex activations 
representing imagined motions, and one would expect requirements for syntactically-complex re-
representations of problems to match known formulas or other reasoning templates to elicit inferior 
frontal activations, particularly in areas of inferior frontal gyrus (IFG) known to be involved in 
complex syntactic processing (Santi & Grodzinsky, 2007; Bahlmann, Schubotz & Friederici, 2008; 



12 of 25

Makuuchi, Bahlmann, Anwander & Friederici, 2009; see Fedorenko, Nieto-Castañón & Kanwisher, 
2012 for a discussion of individual differences).  One would expect activity in either area to scale with 
problem demands.  One would, however, expect subjective reports of difficulty to correlate not with 
increased posterior-parietal or supplementary-motor activation but with increased activations of inferior 
frontal and prefrontal cortex (PFC), especially dorsolateral PFC for problems involving higher 
working-memory demands and rostral PFC for problems requiring multi-tasking or the suppression of 
distractions.

Results from functional imaging studies of mathematical problem solving

The broadly-confirmed greater involvement of SPL in arithmetical operations as the requirement for 
computation increases relative to the requirement for retrieval of results from memory (Dehaene et al., 
2003; Rosenberg-Lee, Lovett & Anderson, 2009; Rosenberg-Lee, Chang, Young, Wu & Menon, 2011) 
is consistent with the present model, particularly if the “rules” being followed are represented as formal 
templates (i.e. formulas with variables or “slots”) that must be actively imagined.  It is interesting that 
SPL activation does not respond differentially as the difficulty of multiplication problems increases 
from one-digit problems to two-digit problems, while supplementary motor cortex and dorsolateral 
PFC activations do respond differentially (Landgraf, van der Meer & Krueger, 2010).  The 
representation of a single “carry” operation may be insufficient to generate differential SPL activation; 
a test of this effect with problems involving more digits and hence presumably imposing a greater 
demand on imaginative resources would be interesting.  The lack of differential activation of AG in this 
data set similarly suggests that the difference between one- and two-digit multiplication problems is 
insufficient to reveal differential demands on number-memory retrieval.  Rosenberg-Lee et al. (2011, 
Fig. 2) report greater activation of both inferior frontal cortex and dorsolateral PFC in multi-step 
division compared to other arithmetic operations, but they do not consider these areas as regions of 
interest and do not discuss this differential activation.  It is, however, consistent with the greater 
working-memory requirements of the interleaved multiplication, subtraction and carry operations of 
long division.

Studies of algebra (Qin et al., 2004; Danker & Anderson, 2007), geometry (Wartenburger et al., 2009; 
Preusse, van der Meer, Ullwer, Brucks, Krueger & Wartenburger, 2010; Preusse et al., 2011) and 
calculus (Krueger et al., 2008) provide more sensitive tests of the current model.  Solving simple 
algebra problems (e.g. 3x + 4 = 19) requires manipulations that are both described and routinely taught 
using spatial metaphors (e.g. an equation has “sides” separated by the '=' sign) suitable to the linear 
form in which such equations are standardly written.  Qin et al. (2004) demonstrate contemporaneous 
left parietal, anterior cingulate and prefrontal activity in algebraic equation solving; Danker and 
Anderson (2007) confirm these activations.  Both interpret their data in terms of the adaptive control of 
thought – rational (ACT-R) model, which represents parietal activations as performing data 
manipulation, cingulate activations as managing goals and prefrontal activations as performing rule and 
fact retrieval from memory (Anderson, 2005).  Although ACT-R is not described in terms of structure 
mapping, the “unwind” operation that forms the core of the ACT-R equation solver is effectively a 
structure-mapping operation that sequentially re-represents parsed equation components using a small 
number of formal templates; a parietal implementation of “unwind” is, therefore, a parietal 
implementation of structure mapping.  Neither Qin et al. (2004) or Danker and Anderson (2007) report 
significant HIPS activation, consistent with primarily formula-based as opposed to primarily numerical 
operations in algebraic problem solving.
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Structure mapping is examined explicitly in the geometric-analogy studies of Wartenburger et al. 
(2009) and Preusse et al. (2010; 2011), which demonstrate coordinated parietal and frontal activity 
modulated by task difficulty. Both inferior (IPL) and superior parietal lobules and supplementary motor 
cortex are active in geometric analogies, with a bias to the left hemisphere as expected.  Interestingly, 
Preusse et al. (2011) report greater parietal activity relative to frontal activity in individuals with higher 
fluid intelligence (Cattell, 1971), suggesting that such individuals require either fewer attentional-
control resources or less working memory (Gray, Chabris & Braver, 2003) to solve geometry problems 
than individuals with lower fluid intelligence.   Preusse et al. (2011) also report increasing activation of 
left IFG specifically with increased problem difficulty, irrespective of fluid intelligence score, 
suggesting that the demand for syntactic manipulations – in the stimuli employed by Preusse et al. 
(2011), manipulations of object shape – is independent of fluid intelligence.  As with studies of algebra 
problem solving, these studies of geometric problem solving do not reveal significant HIPS activations, 
consistent with a specialized role of HIPS in number representation.  The study of function integration, 
another template-driven computational process, by Krueger et al. (2008) demonstrates differential SPL 
but not IPL activity, similar to results for algebraic problem solving.  A greater requirement for multi-
step sequential reasoning, and hence greater demand for working memory, in solving integrals 
compared to simple algebra problems or geometric analogies is reflected by significant activation of 
left dorsolateral PFC.  The significant activation of HIPS by function integration problems is 
surprising, as only two of the seven integrals presented as examples (Krueger et al., 2008, Fig. 1) 
contain numbers in addition to symbols for operators (e.g. 'ln') or variables (e.g. 'x').  As noted earlier, 
this observation may indicate that HIPS has functions other than number representation; such 
additional functions may be recruited by the manipulations of operator symbols required to solve 
integration problems, but not required to solve either the algebra or geometry problems considered 
here.

Where is the mapping step in mathematical structure mapping implemented?

The consistent activation of parietal areas in the studies reviewed above indicates, and is broadly 
interpreted as indicating, parietal involvement in the representation of mathematical structures such as 
equations, diagrams or geometrical figures.  The consistent activation of prefrontal areas indicates, and 
is broadly interpreted as indicating, prefrontal involvement in the goal-dependent control of 
mathematical reasoning.  Rostral PFC appears to be critical, in particular, to the management of 
multiple processing streams and the prevention of interference between streams, for example when a 
partial result must be “set aside” prior to integration with a later result (De Pisapia & Braver, 2008), 
and to the extension or modification of known rules to make them applicable to novel problems 
(Anderson et al., 2011).  These studies, however, leave open the key question of where and how the 
transformation of one mathematical structure into another is implemented.  This is the mapping step 
within structure mapping.  The event-file manipulation model (Fields, 2011, 2012) of structure 
mapping represents this mapping step as modulated or even controlled by prefrontal activity, but as 
implemented by parietal and posterior-frontal components of the pre-motor action planning system.  No 
direct functional imaging evidence for a pre-motor implementation of the mapping step in 
mathematical structure mappings is available.  Before considering the indirect evidence supporting a 
pre-motor implementation, however, it is necessary to evaluate the most plausible alternative, that the 
mapping step in mathematical reasoning is implemented by prefrontal cortex.

Analogy has traditionally been considered to be a human-specific component of “central cognition” – 
to be “why we're so smart” compared to other species (Gentner, 2003; see Fleming, Beran, Thompson, 
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Kleider & Washburn, 2008; Kennedy & Fragaszy, 2008; Fields, 2011 for opposing views).  Functional 
imaging studies of analogical reasoning have consistently demonstrated activation of rostral PFC by the 
mapping step, and have proposed a prefrontal implementation of mapping (Bunge, Wendelken, Badre 
& Wagner, 2005; Green, Fugelsang, Kraemer, Shamosh & Dunbar, 2006; Wendelken, Nakhabenko, 
Donohue, Carter, C & Bunge, 2008; Knowlton & Holyoak , 2009; Cho, Moody, Fernandino, Mumford, 
Poldrack, Cannon, Knowlton & Holyoak, 2010; Krawczyk, McClelland & Donovan, 2010; Volle, 
Gilbert, Benoit & Burgess, 2010; Watson & Chatterjee, 2012; reviewed by Krawczyk, 2012).  While 
the types of analogies studied include both word-based (Bunge et al., 2005; Green et al., 2006; 
Wendelken et al., 2008) and picture-based (Cho et al., 2010; Krawczyk, McClelland & Donovan, 2010) 
semantic analogies and spatial-layout analogies (Volle et al., 2010; Watson & Chatterjee, 2012), 
however, analogies specifically involving relations between motions have not been directly 
investigated by functional imaging.  Whether the mapping step in motion-based analogies is 
implemented by PFC is, therefore, left open by existing experimental studies.

Three lines of reasoning suggest a posterior-parietal implementation of mapping in motion-based 
analogies.  First, the posterior-parietal cortex provides the representation of motion employed for motor 
planning, a task that requires the representation of motions at multiple levels of abstraction.  Unlike for 
spatial layouts, for example, a distinct, more abstract but still precise representation of motion patterns 
is not available; natural language in particular is very poor as a motion representation.  If motions are 
re-represented as amodal abstractions by PFC prior to a PFC-implemented mapping step, it is entirely 
unclear how they would be re-represented.  Second, structure mapping provides a natural description of 
the inferences employed to plan novel motions.  As discussed earlier, motion planning requires 
assembling new relational structures from previously-employed relational structures subject to the 
strong systematicity constraint of quantitatively-correct force-motion scaling.  The facility of non-
human animals in planning novel motions argues strongly against any requirement for a language-
dependent or similarly abstract or amodal re-representation of motions to enable mapping across 
motion representations.  The bilateral IFG activations observed in the studies of spatial-layout 
analogies by Volle et al. (2010) and Watson and Chatterjee (2012) are interesting in this regard.  The 
study of Volle et al. (2010), which employed sequences of letters as layouts, reported bilateral 
opercular IFG (Brodmann Area 44) activation but only right triangular IFG (Brodmann Area 45) 
activation (Table 1), while the study of Watson and Chatterjee (2012), which employed arrays of 
geometrical symbols as layouts, reported bilateral triangular but only right opercular IFG activation 
(Fig. 3C).  Watson and Chatterjee (2012) interpret their observed opercular IFG activation in terms of 
incorrect-response inhibition, a form of cognitive control.  Volle et al. (2010) do not discuss their 
observed IFG activations, but they are consistent with the use of spatially-arranged letter combinations 
as stimuli.  These results for spatial-layout analogies, which both Volle et al. (2010) and Watson and 
Chatterjee (2012) interpret as indicating the implementation of mapping by rostral PFC, can be 
contrasted with those of the geometric-analogy study of Pruess et al. (2011), which reports increasing 
left IFG activity with increasing problem difficulty as discussed above.  Finally, the substantial 
facilitation of both mathematical and physical reasoning provided by diagrams depicting metaphorical 
motion, again as discussed previously, suggests that structure mappings defined over diagrams are less 
cognitively demanding than structure mappings defined over language-based representations, which the 
work of Bunge et al. (2005), Green et al. (2006) and Wendelken et al. (2008) shows is implemented by 
PFC.

While diagrammatic reasoning in many domains could be employed to evaluate the potential roles of 
posterior parietal cortex and PFC in the mapping step using dissociation designs such as those of Cho 
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et al. (2010), Krawczyk, McClelland and Donovan (2010) or Watson and Chatterjee (2012), “diagram 
chasing” in category theory appears to provide a particularly pure case of diagram-based structure 
mapping for which examples with an extraordinary range of difficulty, an alternative, language-based 
notation with provably identical mathematical content and a population of experts – advanced 
mathematics students – are readily available.  An experimental analysis of category-theoretic diagram 
chasing as a proof technique would, moreover, be an experimental analysis of one of the most general 
forms of mathematical reasoning yet devised.

Conclusion

Expert-level mathematics is one of the most abstract cognitive activities in which human beings 
engage.  The idea that such an abstract activity could be described as both “embodied” and 
“metaphorical” was highly controversial when Lakoff and Núñez (2000) proposed it; Dehaene (2011) 
could still claim, a decade of intensive work on embodied cognition later, that “most mathematicians, 
overtly or covertly, are Platonists” (p. xi) and hence unlikely to support either embodiment or metaphor 
as characterizations of their thinking.  The very notation, however, of much expert-level mathematics 
suggests that the metaphor “state changes are like motions” underlies mathematical cognition.  The 
available data on the human implementation of mathematical reasoning is consistent with the 
hypothesis that, with the exception of problems solved exclusively by memory look-up or number-line 
manipulation, posterior-parietal and supplementary-motor motion representations in fact underlie not 
just some but all mathematical cognition.

The empirical plausibility of a pre-motor implementation of structure mapping not just in mathematics 
but also in tool improvisation (Fields, 2011) and physical reasoning (Fields, 2012) suggests that pre-
motor structure mapping is both ancient and highly representationally plastic.  If this is the case, a 
second hypothesis is suggested: that prefrontal implementations of structure mapping are learned 
generalizations of pre-motor structure mapping.  Were this to be the case, the semantic analogies upon 
which most analogy research has focused to date would be evolutionarily – and perhaps also culturally 
– late analogs of much older analogies, those concerned with perceptible forces and motions. 
Understanding the implementation of these older, pre-motor analogies may shed new light on both the 
implementation and the cognitive semantics of their prefrontal descendants.

The present conceptualization of mathematical reasoning as essentially analogical also raises a question 
about mathematics itself: why is mathematics so hard?  If mathematics is based on a few simple 
motions – as the Turing machine shows that it can be – why are so few human beings adept at 
mathematics?  One possible answer is that more human reasoning may be “mathematical” than 
generally counts as such: the largely-unconscious cognition that humans employ to move their bodies 
through ordinary life may be productively conceptualized as “mathematical” cognition.  From this 
perspective, a mathematical pedagogy that emphasized metaphorical motions, either by bodily 
movements or diagrams, might facilitate the teaching of mathematics, as some recent pedagogical 
studies in fact suggest (Kellman, Massey & Son, 2009; Radford, 2009; Blair & Schwartz, 2012). 
Another answer is suggested by the practice of programming.  What is hard about programming is the 
translation of a statement of desired behavior – a statement that may be far vaguer than a “problem 
specification” – into the simple operations stipulated by a programming language.  Such decomposition 
of a problem stated in everyday or even specialized terms into an abstract vocabulary is itself a form of 
structure mapping, one that often requires the recognition of relational similarities across large 
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semantic distances.  Mathematics may be a natural human skill; abstract problem decomposition, 
however, decidedly is not. 

Acknowledgments

Thanks to Action Editor Martin Fischer and two anonymous referees for helpful comments on an 
earlier version of this paper.  

Conflict of interest statement 

The author declares that he has no financial or other conflicts of interest with regard to the research 
reported here. 

References

Adámek, J., Herrlich, H. & Strecker, G. E. (2004).  Abstract and Concrete Categories (Web edition). 
Available from http://katmat.math.uni-bremen.de/acc/acc.htm (accessed Nov. 26, 2012).

Anderson, J. R. (2005).  Human symbol manipulation within an integrated cognitive architecture. 
Cognitive Science 29, 313-341. 

Anderson, J. R., Betts, S., Ferris, J. L. & Fincham, J. M. (2011).  Cognitive and metacognitive activity 
in mathematical problem solving: Prefrontal and parietal patterns.  Cognitive, Affective & Behavioral  
Neuroscience 11, 52-67.

Aziz-Zadeh, L. & Damasio, A. (2008).  Embodied semantics for actions: Findings from functional 
brain imaging.  Journal of Physiology - Paris 102, 35-39.

Baez, J. C. & Stay, M. (2011).  Physics, topology, logic and computation: A Rosetta stone.  New 
Structures for Physics: Lecture Notes in Physics 813.  Berlin:Springer (pp. 95-172).

Bahlmann, J., Schubotz, R. I. & Friederici, A. D. (2008).  Hierarchical artificial grammar processing 
engages Broca's area.  NeuroImage 42, 525-534.

Blair, K. P. & Schwartz, D. L. (2012).  A value of concrete learning materials in adolescence.  In 
Reyna, V. F., Chapman, S., Dougherty, M., & Confrey, J. (Eds.).  The adolescent brain: Learning,  
reasoning, and decision making.  Washington, DC: APA (pp. 95-122).

Bubic, A., von Cramon, D. Y. & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers 
in Psychology - Human Neuroscience 4, 25 (doi: 10.3389/fnhum.2010.00025 ). 

Bunge, S. A., Wendelken, C., Badre, D. & Wagner, A. D. (2005).  Analogical reasoning and prefrontal 
cortex: Evidence for separate retrieval and integration mechanisms. Cerebral Cortex 5, 239-249. 

http://katmat.math.uni-bremen.de/acc/acc.htm


17 of 25

Butterworth, B. (2010).  Foundational numerical capacities and the origins of dyscalculia.  Trends in  
Cognitive Sciences 14, 534-541.

Cantlon, J., Brannon, E., Carter, E. & Pelphrey, K. (2006).  Functional imaging of numerical processing 
in adults and 4-yr-old children.  PLOS Biology 4, 0844-0854.

Catmur, C., Walsh, V. & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. 
Current Biology 17, 1527-1531. 

Cattell, R. B. (1971).  Abilities: Their Structure, Growth and Action.  Boston: Houghton Mifflin.

Chatterjee, A. (2010).  Disembodying cognition.  Language and Cognition 2, 79-116.

Cho, S., Moody, T. D., Fernandino, F., Mumford, J. A., Poldrack, R. A., Cannon, T. D., Knowlton, B. J. 
& Holyoak, K. J. (2010).  Common and dissociable prefrontal loci associated with component 
mechanisms of analogical reasoning. Cerebral Cortex 20, 524-533. 

Cohen Kadosh, R. C. & Walsh, V. (2009).  Numerical representation in the parietal lobes: Abstract or 
not abstract?  Behavioral and Brain Sciences 32, 313-328.

Cummins, R. (1983).  The Nature of Psychological Explanation.  Cambridge, MA: MIT.

Danker, J. F. & Anderson, J. R. (2007).  The roles of prefrontal and posterior parietal cortex in algebra 
problem solving: A case of using cognitive modeling to inform neuroimaging data.  NeuroImage 35, 
1365-1377 .

De Pisapia, N. & Braver, T. S. (2008).  Preparation for integration: The role of anterior prefrontal 
cortex in working memory.  NeuroReport 19, 15-19.

Dehaene, S. (2011).  The Number Sense (2nd Ed.).  New York: Oxford University Press.

Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003).  Three parietal circuits for number processing. 
Cognitive Neuropsychology 20, 487-506.

Desai, R. H., Binder, J. R., Conant, L. L., Mano, Q. R. & Seidenberg, M. S. (2011).  The neural career 
of sensory-motor metaphors.  Journal of Cognitive Neuroscience 23, 2376-2386.

Eilenberg, S. & Mac Lane, S. (1945). Relations between homology and homotopy groups of spaces. 
Annals of Mathematics 46, 480-509.

Engel, A., Burke, M., Fiehler, K., Bien, S. & Rosler, F. (2007). How moving objects become animated: 
The human mirror system assimilates non-biological movement patterns. Social Neuroscience 3, 368-
387.

Falkenhainer, B., Forbus, K. D. & Gentner, D. (1989).  The structure mapping engine: algorithm and 
examples.  Artificial Intelligence 41, 1-63.



18 of 25

Fedorenko, E., Nieto-Castañón, A. & Kanwisher, N. (2012).  Syntactic processing in the human brain: 
What we know, what we don’t know, and a suggestion for how to proceed.  Brain and Language 120, 
187-207.

Fields, C. (2011). Implementation of structure-mapping inference by event-file binding and action 
planning: A model of tool-improvisation analogies. Psychological Research 75, 129-142 .

Fields, C. (2012). Motion as manipulation: Implementation of force-motion analogies by event-file 
binding and action planning. Cognitive Processing 13, 231-241. 

Fischer, M. H. & Brugger, P. (2011).  When digits help digits: Spatial-numerical associations point to 
finger counting as prime example of embodied cognition.  Frontiers in Psychology – Cognition 2, 260 
(doi: 10.3389/fpsyg.2011.00260).

Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. 
Cognitive Processing 13, 161-164.

Fleming, T. M., Beran, M. J., Thompson, R. K. R., Kleider, H. M. & Washburn, D. A. (2008).  What 
meaning means for same and different: Analogical reasoning in humans (Homo sapiens), chimpanzees 
(Pan troglodytes) and rhesus monkeys (Macaca mulatta).  Journal of Comparative Psychology 122, 
176-185.

Galton, A. (2006).  The Church-Turing thesis: Still valid after all these years?  Applied Mathematics  
and Computation 178, 93-102.

Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy. Cognitive Science 7, 155-
170 .

Gentner, D. (2003). Why we’re so smart.  In: Gentner. D. & Goldin- Meadow, S. (Eds) Language and 
Mind: Advances in the Study of Language and Thought.  Cambridge, MA: MIT Press (pp 195-235 ).

Goldberg, R. P. (1974). A survey of virtual machine research.  IEEE Computer 7(6), 34-45.

Gottfried, B. (2012) Using space to represent data: Diagrammatic reasoning.  Cognitive Processing 13, 
371-373.

Gray, J. R., Chabris, C. F. & Braver, T. S. (2003).  Neural mechanisms of general fluid intelligence. 
Nature Neuroscience 6, 316-322.

Green, A., Fugelsang, J., Kraemer, D., Shamosh, N. & Dunbar, K. (2006).  Frontopolar cortex mediates 
abstract integration in analogy.  Brain Research 1096, 125-137. 

Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews 34, 
575-583. 

Heyes, C. (2012). Grist and mills: On the cultural origins of cultural learning. Philosophical 
Transactions of the Royal Society B 367, 2181-2191. 



19 of 25

Holyoak, K. (2005).  Analogy. In: Holyoak, K. & Morrison, R. (Eds) The Cambridge Handbook of  
Thinking and Reasoning.  Cambridge: Cambridge University Press (pp 117-142). 

Hommel, B. (2004). Event Files: Feature binding in and across perception and action. Trends in  
Cognitive Sciences 8, 494-500. 

Hopcroft, J. E. & Ullman, J. D. (1979).  Introduction to Automata, Languages and Computation. 
Boston: Addison-Wesley.

Kellman, P. J., Massey, C. M. & Son, J. Y. (2009).  Perceptual learning modules in mathematics: 
Enhancing students’ pattern recognition, structure extraction, and fluency.  Topics in Cognitive Science 
2(2), 1-21.

Kennedy, E. H. & Fragaszy, D. M. (2008).  Analogical reasoning in a capuchin monkey (Cebus apella). 
Journal of Comparative Psychology 122, 167-175.

Kiefer, M. & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical 
developments, current evidence and future directions. Cortex 48, 805-825. 

Knops, A., Viarouge, A. & Dehaene, S. (2009).  Dynamic representations underlying symbolic and 
nonsymbolic calculation: Evidence from the operational momentum effect.  Attention, Perception & 
Psychophysics 71, 803-821.

Knowlton, B. J. & Holyoak, K. J. (2009) Prefrontal substrate of human relational reasoning. In: 
Gazzaniga, M. S. (Ed.) The Cognitive Neurosciences.  Cambridge, MA: MIT Press (pp. 1005-1017). 

Kosslyn, S. M., Thompson, W. L. & Ganis, G. (2006). The Case For Mental Imagery.  New York: 
Oxford University Press. 

Krawczyk, D. C. (2012).  The cognition and neuroscience of relational reasoning. Brain Research 
1428, 13-23.  

Krawczyk, D. C., McClelland, M. M. & Donovan, C. M. (2010).  A hierarchy for relational reasoning 
in the prefrontal cortex.  Cortex 47, 588-597.

Krueger, F., Spampinato, M. V., Pardini, M., Pajevic, S., Wood, J. N., Weiss, G. H., Landgraf, S. & 
Grafman, J. (2008).  Integral calculus problem solving: An fMRI investigation.  NeuroReport 19, 1095-
1099.

Lakoff, G. & Johnson, M. (1999).  Philosophy in the Flesh.  New York: Basic Books.

Lakoff, G. & Núñez, R. E. (2000).  Where Mathematics Comes From: How the Embodied Mind Brings  
Mathematics Into Being.  New York: Basic Books.

Landgraf, S., van der Meer E. & Krueger, F. (2010).  Cognitive resource allocation for neuronal 
activity underlying mathematical cognition: A multi-method study.  International Journal on 



20 of 25

Mathematics Education 42, 579-590.

Larkin. J. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive  
Science 11, 65-99 .

Mac Lane, S. (1972).  Categories for the Working Mathematician.  Berlin: Springer.

Makuuchi, M., Bahlmann, J., Anwander, A. & Friederici, A. D. (2009).  Segregating the core 
computational faculty of human language from working memory.  Proceedings of the National  
Academy of Sciences USA 106, 8362– 8367.

Markman, A. & Gentner, D. (2001). Thinking. Annual Review of Psychology 52, 223-247. 

Marr, D. (1982). Vision.  New York: Freeman.

Mashal, N., Faust, M., Hendler, T. & Jung-Beeman, M. (2007).  An fMRI investigation of the neural 
correlates underlying the processing of novel metaphoric expressions.  Brain and Language 100, 115-
126.

McCrink, K., Dehaene, S. &Dehaene-Lambertz, G. (2007). Moving along the number line: Operational
momentum in nonsymbolic arithmetic.  Perception & Psychophysics 69, 1324-1333. 

Moscovitch, M. (2008). The hippocampus as a “stupid”, domain-specific module: Implications for 
theories of recent and remote memory, and of imagination. Canadian Journal of Experimental 
Psychology 62, 62-79. 

Moulton, S. T. & Kosslyn, S. M. (2009). Imagining predictions: mental imagery as mental emulation. 
Philosophical Transactions of the Royal Society B 364, 1273-1280. 

Mowat, E. & Davis, B. (2010).  Interpreting embodied mathematics using network theory: Implications 
for mathematics education.  Complicity 7, 1-31.

Nassi, J. J. & Callaway, E. M. (2009). Parallel processing strategies of the primate visual system. 
Nature Reviews Neuroscience 10, 360-372. 

Núñez, R. E. & Lakoff, G.  (2005).  The cognitive foundations of mathematics: The role of conceptual 
metaphor.  In: Campbell, J. I. D. (Ed.) Handbook of Mathematical Cognition.  New York: Psychology 
Press (pp. 109-124).

Piazza, M. (2010).  Neurocognitive start-up tools for symbolic number representations.  Trends in 
Cognitive Sciences 14, 542-551.

Preusse, F., van der Meer, E., Ullwer, D., Brucks, M., Krueger, F. & Wartenburger, I. (2010).  Long-
term characteristics of analogical processing in high-school students with high fluid intelligence: An 
fMRI study.  ZDM Mathematics Education 42, 635-647.

Preusse, F., van der Meer, E., Deshpande, G., Krueger, F. & Wartenburger, I. (2011).  Fluid intelligence 



21 of 25

allows flexible recruitment of the parieto-frontal network in analogical reasoning.  Frontiers in 
Psychology – Human Neuroscience 5, 22 (doi: 10.3389/fnhum.2011.00022).

Qin, Y., Carter, C., Silk, E., Stenger, V. A., Fissell, K., Goode, A. & Anderson, J. R. (2004).  The change 
in brain activation patterns as children learn algebra equation solving.  Proceedings of the National  
Academy of Sciences USA 101, 5686-5691.

Radford, L. (2009).  Why do gestures matter? Sensuous cognition and the palpability of mathematical 
meanings.  Educational Studies in Mathematics 70, 111-126.

Ranganath, C. (2010). A unified framework for the functional organization of the medial temporal 
lobes and the phenomenology of episodic memory. Hippocampus 20, 1263-1290. 

Richards, C. (2002).  The fundamental design variables of diagramming. In: Anderson, M., Meyer, B. 
& Olivier, P. (Eds) Diagrammatic Representation and Reasoning. Berlin: Springer (pp 85-102). 

Rosenberg-Lee, M., Lovett, M. C. & Anderson, J. R. (2009).  Neural correlates of arithmetic 
calculation strategies.  Cognitive, Affective & Behavioral Neuroscience 9, 270-285.

Rosenberg-Lee, M., Chang, T. T., Young, C. B., Wu, S. & Menon, V. (2011).  Functional dissociations 
between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic 
mapping study.  Neuropsychologia 49, 2592-2608.

Santi, A. & Grodzinsky, Y. (2007).  Working memory and syntax interact in Broca's area.  NeuroImage 
37, 8-17.

Schmidt, G. L., Kranjec, A., Cardillo, E. R. & Chatterjee, A. (2010).  Beyond laterality: A critical 
assessment of research on the neural basis of metaphor.  Journal of the International Neuropsychology 
Society 16, 1-5.

Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new 
framework. Trends in Cognitive Sciences 11, 211-218.

Schubotz, R. & von Cramon, D. Y. (2004).  Sequences of abstract nonbiological stimuli share ventral 
premotor cortex with action observations and imagery.  Journal of Neuroscience 24, 5467-5474.

Searle, J. R. (1980).  Minds, brains and programs.  Behavioral and Brain Sciences 3, 417-458.

Simons, J. S., Henson, R. N. A., Gilbert, S. J. & Fletcher, P. C. (2008). Separable forms of reality 
monitoring supported by anterior prefrontal cortex. Journal of Cognitive Neuroscience 20, 447-457.

Stoy, J. E. (1977).  Denotational Semantics: The Scott-Strachey Approach to Programming Language  
Theory.  Cambridge, MA: MIT.

Tanenbaum, A. S. (1976).  Structured Computer Organization.  Upper Saddle River, NJ: Prentice Hall.

Volle, E., Gilbert, S. J., Benoit, R. G. & Burgess, P. W. (2010).  Specialization of the rostral prefrontal 



22 of 25

cortex for distinct analogy processes.  Cerebral Cortex 20, 2647-2659. 

Turing, A. M. (1937).  On computable numbers, with an application to the Entscheidungsproblem. 
Proceedings of the London Mathematical Society 42, 230-265.

Wartenburger, I., Heekeren, H. R., Preusse, F., Kramer, J. & van der Meer, E. (2009). Cerebral 
correlates of analogical processing and their modulation by training. NeuroImage 48, 291-302. 

Watson, C. & Chatterjee, A. (2012).  A bilateral frontoparietal network underlies visuospatial analogical 
reasoning.  NeuroImage 59, 2831-2838.

Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C.S. & Bunge, S.A. (2008). “Brain is to 
thought as stomach is to?’’ Investigating the role of rostrolateral prefrontal cortex in relational 
reasoning. Journal of Cognitive Neuroscience 20, 682-693. 

Wigner, E. P. (1960).  The unreasonable effectiveness of mathematics in the natural sciences. 
Communications in Pure and Applied Mathematics 13, 1-14.

Wood, G., Willmes, K., Nuerk, H.-C. & Fischer, M. H. (2008).  On the cognitive link between space 
and number: a meta-analysis of the SNARC effect.  Psychology Science Quarterly 50, 489-525.

Figure Captions

Fig. 1:  Representation of the “numbers are like collections of objects” grounding metaphor of Lakoff 
& Núñez (2000) as a hierarchy of progressively more abstract structure mappings (vertical arrows).  (a) 
Structure mapping from the act of adding a specific object to a specific container to the act of adding 
an arbitrary object to an arbitrary container.  The “Add 1” relation is preserved.  (b) Structure mapping 
from the act of adding an object to a container to the act of raising a finger.  The “Add 1” relation is 
preserved.  (c)  Structure mapping from the act of raising a finger to the act of marking a paper.  The 
“Add 1” relation is preserved.  Composing mappings (a) – (c) relates the accumulation of blocks in a 
box to the accumulation of marks on a paper.

Fig. 2:  Representation of emulation as structure mapping.  Systematicity is defined as correctness of 
emulation.  Viewed in reverse, the emulation mapping defines a semantic interpretation of the behavior 
of the hardware.  Note that there is no assumption that an emulation map or an emulation-based 
semantics is defined for every state of the hardware.  The diagram can be generalized to represent an 
emulation mapping between virtual machines.

Fig. 3:  (a) Diagram illustrating a functor F mapping a category B to another category A.  The diagram 
commutes in case f◦F = F◦g for every arrow f in A and g in B for which the composition of arrow and 
functor is defined.  (b) An instance of (a) showing specific arrows r and s defined for specific objects ai 

and aj of A and bk and bl of B, respectively.  Commutativity requires that  r◦F = F◦s.
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