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We show in this pedagogical review that far
from being an apparent law of physics that
stands by itself, the holographic principle is

a straightforward consequence of the quantum infor-
mation theory of separable systems. It provides a
basis for the theories of measurement, time, and scat-
tering. Utilizing the notion of holographic screens,
which are information encoding boundaries between
physical subsystems, we demonstrate that the physical
interaction is an information exchange during which
information is strictly conserved. Then we use general-
ized holographic principle in order to flesh out a fully-
general quantum theory of measurement in which the
measurement produces finite-resolution, classical out-
comes. Further, we show that the measurements are
given meaning by quantum reference frames and se-
quential measurements induce topological quantum
field theories. Finally, we discuss principles equivalent
to the holographic principle, including Markov blan-
kets and the free-energy principle in biology, multiple
realizability and virtual machines in computer science,
and active inference and interface theories in cogni-
tive science. This appearance in multiple disciplines
suggests that the holographic principle is not just a
fundamental principle of physics, but of all of science.
Quanta 2022; 11: 72–96.

The world is all that is the case.
– Ludwig Wittgenstein

No question? No answer!
– John Archibald Wheeler

1 Introduction

The Holographic Principle (HP) was originally stated as
a conjecture by Gerard ’t Hooft:

Given any closed surface, we can represent all
that happens inside it by degrees of freedom on
this surface itself. [1]

The HP generalizes Bekenstein’s area law [2] for the
entropy of a black hole:

S Th =
A
4
, (1)

where S Th denotes the thermodynamic entropy, in this
case of a black hole, and A its horizon area in Planck

This is an open access article distributed under the terms
of the Creative Commons Attribution License CC-BY-3.0, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Quanta | DOI: 10.12743/quanta.v11i1.206 November 2022 | Volume 11 | Issue 1 | Page 72

mailto:fieldsres@gmail.com
mailto:jfglazebrook@eiu.edu
mailto:glazebro@illinois.edu
mailto:marciano@fudan.edu.cn
mailto:marciano@lnf.infn.it
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.12743/quanta.v11i1.206


units (see [3, 4] for further discussion of Eq. (1) in the
context of alternative notions of entropy). The number
of “degrees of freedom on this surface itself” cannot, in
particular, exceed A

4 , with A the area of the surface in
question [1]. We will see in what follows that S Th always
refers to an observable entropy, and hence to the number
of observable degrees of freedom of a system. The area
A in Eq. (1) refers, therefore, to an observable area.

Leonard Susskind [5] provided the first physical imple-
mentation of ’t Hooft’s conjecture by defining an explicit
mapping from volume to surface degrees of freedom for
a general closed system. This mapping assumes that
all light rays that are normal to any element of surface
within the bulk are also normal to the boundary. Raphael
Bousso [6] then showed that requiring covariance induces
a holographic limit on information transfer by light, re-
formulating Eq. (1) as a covariant entropy bound:

S Th(L(Σ)) ≤
A(Σ)

4
, (2)

where A(Σ) denotes the area in Planck units of a (typi-
cally but not necessarily) closed surface Σ, and L(Σ) any
light-sheet of Σ, defined as any collection of converging
light rays that propagate from Σ toward some focal point
away from Σ. Bekenstein’s area law, Eq. (1) emerges as
the special case in which the equality in Eq. (2) holds.
Bousso also provided several counterexamples showing
the failure of a straightforward interpretation of the HP
as a spacelike entropy bound.

When formalized by Eq. (1) or (2), the HP is semi-
classical; indeed it is “quantum” only in its reliance on
Planck units and hence a finite value of ℏ. The entropy
S Th is a classical thermodynamic entropy. In the context
of general relativity, Σ is a continuous classical manifold
enclosing a continuous classical volume characterized by
a real-valued metric. As ’t Hooft pointed out, the HP
renders S Th(L(Σ)) independent of the metric inside Σ:

The inside metric could be so much curved that
an entire universe could be squeezed inside our
closed surface, regardless how small it is. Now
we see that this possibility will not add to the
number of allowed states at all. [1]

Here the “allowed states” are the thermodynamic states
of Σ, states that an external observer can count by measur-
ing energy transfer between the system and its external
environment. In the case of a black hole, Rovelli [7, 8]
has shown explicitly that states that are effectively iso-
lated from the external environment and hence do not
contribute to the system–environment interaction over rel-
evant time scales do not contribute to S Th(L(Σ)). A black
hole can, in principle, have arbitrarily many such isolated

states, as in Wheeler’s “bag of gold” model of a black
hole with a small horizon and large interior [9].

The HP was given broader theoretical relevance
within quantum gravity research by Maldacena [10],
who showed that a string quantum gravity on a
“bulk” d-dimensional anti de Sitter (AdS) spacetime
and a conformal quantum field theory (CFT) on its
d–1-dimensional boundary encode the same information.
A more limited dS/CFT holographic duality has also been
explored [11]. While such dualities have seen wide theo-
retical application, their physical motivation remains that
of ’t Hooft’s conjecture and Bekenstein’s area law. The
existence of these holographic dualities suggests that the
HP is both deep and fully general, but they do not explain
why this should be the case. Bousso summarized the
situation by remarking that the HP remains:

. . . an apparent law of physics that stands by
itself, both uncontradicted and unexplained by
existing theories. . . . [that] may still prove
incorrect or merely accidental, signifying no
deeper origin. [6, p. 826]

Our purpose here is to respond to this remark of
Bousso’s by developing a clear, consistent, and at bot-
tom, a very simple picture of the physical meaning of
the HP. Building on previous results [12–17], we show
that the HP can be generalized to describe the maximum
classical information flow implemented by any physical
interaction between mutually separable, i.e. unentangled,
finite physical systems. Specifically, we can state:

Generalized Holographic Principle (GHP):
If U = AB is a finite closed system, then if
|AB⟩ is separable, the classical information ex-
change between A and B is limited to N bits,
where N is the dimension of the interaction
Hamiltonian HAB.

This GHP is a fully quantum information-theoretic
principle that is entirely independent of geometric con-
siderations. The N exchanged bits can, however, without
loss of generality be viewed as encoded at a density of
no more than 1 bit per 4 l2P on an ancillary, spacelike
boundary B separating A from B. Bousso’s covariant
formulation follows as a special case whenever B is con-
sidered a physical boundary traversed by a light sheet,
i.e. whenever photons (or indeed any gauge bosons) are
considered to be “carriers” of the exchanged information.
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After setting up the formalism in §2, we show in sub-
sequent sections how:

1. The GHP enables a provably general theory of quan-
tum measurement [18] that is fully consistent with
the free-energy principle introduced by Friston and
colleagues [19–23] as a description of active infer-
ence by Bayesian agents (§3).

2. The GHP provides a natural definition of system-
relative entropic time applicable to any physical sys-
tem A that is separable from its environment B (§4).

3. The GHP allows us to view B as a scattering center
and its areal elements as encoding the S-matrix ele-
ments specifying the mapping between (asymptotic)
initial and final states in any scattering process (§5).

When generalized to the GHP, therefore, the HP does
not “stand by itself” but is rather a fundamental principle
from which much familiar physics follows. It has, more-
over, a simple and intuitively obvious physical meaning:

GHP (informal): Any classical information ex-
changed between finite physical systems is en-
coded on the boundary between them.

Intersystem boundaries are, in other words, classical
information channels. We review in §6 various statements
of this same principle that have been derived in statistical
physics, computer science, and the life sciences. We
conclude that the HP is a foundational principle not just
of physics, but of all of science.

2 Holographic screens are
information encoding boundaries

2.1 Physical interaction is information
exchange

Let U be an isolated, finite-dimensional quantum sys-
tem and consider an arbitrarily-chosen bipartite decom-
position U = AB corresponding to a Hilbert-space ten-
sor product HU = HA ⊗ HB. Any such decomposi-
tion induces an interaction HAB = HU − (HA + HB).
Consider a time period that is short enough that HAB

is effectively constant, and during which HAB is weak
enough that |AB(t)⟩ can be considered separable, i.e.
|AB(t)⟩ = |A(t)⟩|B(t)⟩ over the entire time period of inter-
est. In this case, we can choose orthogonal basis vectors
|ik⟩ so that

HAB = βkKB Tk

N∑
i

αk
i Mk

i , (3)

where KB denotes Boltzmann’s constant, Tk is the ab-
solute temperature of the environment, k = A or B,
the Mk

i are N mutually-orthogonal Hermitian operators
with eigenvalues in {−1, 1}, the αk

i ∈ [0, 1] are such that∑N
i α

k
i = 1, and βk ≥ ln 2 is an inverse measure of k’s

thermodynamic efficiency that depends on the internal dy-
namics Hk; see [12–16] for further motivation and details
of this construction. For fixed k, the operators Mk

i clearly
must commute, i.e. [Mk

i ,M
k
j ] = Mk

i Mk
j − Mk

j Mk
i = 0 for

all i, j; hence when expressed as Eq. (3), HAB is swap-
symmetric under the permutation group S N for each k.
We can, therefore, write N = dim(HAB), i.e. the eigenval-
ues HAB can be encoded by 2N distinct N-bit strings. The
weak-interaction limit requires N ≪ dim(HA), dim(HB),
although as discussed below, this condition is not suffi-
cient to guarantee separability.

When expressed as Eq. (3), HAB can be realized phys-
ically as illustrated in Fig. 1. The operators Mk

i are in-
terpreted, as the notation suggests, as measurement op-
erators, and dually as state-preparation operators [24].
As each of the Mk

i has eigenvalues in {−1, 1}, they can
be regarded as z-spin operators sk

z(i) acting on individual
qubits qi. The orthogonality of the Mk

i requires the qi

to be mutually independent, i.e. non-interacting. Each
“cycle” of interaction between A and B then comprises
four sequential steps: preparation of the qi by B, mea-
surement of the qi by A, preparation of the qi by A, and
measurement of the qi by B. The systems A and B thus
exchange N bits of classical information on each cycle.
Note that, in this picture, the operators MA

i and MB
i do

not act directly on the Hilbert spaces HB and HA of B
and A respectively, but on the N-dimensional effective
Hilbert spaces HA

<qi>
and HB

<qi>
that specify, from the

perspectives of A and B respectively, the states of the qi.
As the eigenvalues of the Mk

i when considered together
encode an eigenvalue of HAB, the classical information
exchanged is the current eigenvalue of HAB, i.e. the en-
ergy transferred by the interaction. The symmetry of the
interaction cycle then assures conservation of energy.

The array qi of noninteracting qubits via which A and
B exchange classical information clearly performs the
functions of a holographic screen:

• The qi separate A from B. The interpretation of the
Mk

i as preparation and measurement operators de-
pends critically on the assumption of separability;
if A and B are entangled, i.e. if |AB⟩ fails to fac-
tor as |AB⟩ = |A⟩|B⟩, the idea that A “prepares” or
“measures” |B⟩ is physically meaningless.

• The qi encode all of the classical information about
B accessible to A and vice versa. Indeed if HU re-
mains unspecified, HA and HB can vary arbitrarily
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Figure 1: A holographic screen B separating finite systems A and B with an interaction HAB given by Eq. (3) can be realized
by an ancillary array of noninteracting qubits that are alternately prepared by A (B) and then measured by B (A). Qubits are
depicted as Bloch spheres [25]. There is no requirement that A and B share preparation and measurement bases, i.e. quantum
reference frames (QRFs). Adapted from [15].

without affecting HAB, as required by ’t Hooft’s idea
of squeezing “an entire universe” into B without
affecting A.

We can, therefore, think of the qi as “points” or more
accurately “sites” on a boundary B separating A from B
and hence separating their respective Hilbert spacesHA

andHB, where clearly AB = U requiresHA ⊗HB = HU .
This boundary B is, however, entirely ancillary; its states
|qi⟩ are not elements of HU . The independence of the
qi gives B a discrete, indeed, a Grothendieck topology
(see e.g. [26]). At this stage of the construction, B is just
a discrete topological space that is neither characterized
as a space-like nor as a time-like surface. The embed-
ding of B in a d + 1 dimensional spacetime manifold
can be achieved through a tessellation into voxels of the
manifold. Voxels that neighbour each other and cubulate
spacetime introduce a concept of distance between qubits.
In turn qubits define the nodes of a one-complex that
represent the discretization of B. We can provide an il-
lustrative example by embedding B in a 2+1 dimensional
spacetime manifold. In this case, we can “geometrize” B
as shown in Fig. 2 by embedding each of the qi in a
(conventionally 3d) voxel of size (2∆x)2 · 2c∆t where
to preserve covariance and hence Eq. (2), ∆x ≥ lP and
∆t ≥ tP, with lP and tP denoting the Planck length and

time respectively, and c is the maximal speed of classical
information transfer, i.e. the speed of light. As B itself
is ancillary toHU , this geometry is ancillary toHU . The
geometry on B has, therefore, no effect on the physics
implemented by the joint system self-interaction HU or
the A–B interaction HAB.

The GHP as stated above clearly follows immediately,
by construction, from the mutual separability of A and
B via Eq. (3); Eq. (2) and hence the covariant HP fol-
low when the boundary B is geometrized as above. The
GHP can, therefore, be viewed as an alternative way of
stating the fundamental idea that physical systems must
have their own, mutually conditionally independent states
if they are to be regarded as interacting. This idea of
conditional independence is so deeply embedded in our
language – the language of “things” that interact with
each other – that it is seldom made explicit. The GHP for-
malizes an obvious logical consequence of this idea: finite
things can only exchange finite information by interacting,
and this information has to fit through the finite channel
implemented by the boundary that separates them. We
will see in what follows that this seemingly-simple fact
has significant implications both in physics and in other
disciplines. Indeed, it generates, with minimal further
assumptions, much of what is considered foundational in
physics, computer science, and the life sciences.
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2c t∆

Figure 2: One qubit degree of freedom (represented as a Bloch sphere), e.g. a spin, embedded in a 3d voxel at some minimal
scale ∆x, ∆t. Here c is the maximal speed of (classical) information transfer. The boundary B can be considered to be a
manifold tessellated into such voxels.

2.2 Information is strictly conserved

The representation of HAB as a Hermitian operator in
Eq. (3) depends on the Axiom of Unitarity [27]; in partic-
ular, it requires the time evolution operator:

PU = e−(ı/ℏ)HU (t) (4)

acting on the state |U⟩ of the joint system U = AB to
be unitary. Note that U being closed implies that |U⟩
is a pure quantum state, not an ensemble. The Axiom
of Unitarity guarantees that the time evolution of any
closed system is reversible, and hence that information is
conserved in any closed system.

Because the GHP follows by construction from Eq. (3),
it is clearly consistent with the Axiom of Unitarity, and
hence with strict conservation of information. Indeed,
the informational symmetry of any holographic screen B
enforces the conservation of information by preventing
any “build up” of information on one side or the other.

If we regard the conservation of information (and hence
unitarity) as a fundamental principle analogous to the
conservation of energy, then we can formulate it as the
Principle that the net information in any closed system
remains constant. The joint system U is closed by defini-
tion; hence unitarity requires the net information content
of U to be constant. As in the case of net energy, however,
the net information in a closed system is a scalar quantity
for which the zero point can be chosen arbitrarily. We
can, therefore, rescale the net information in U to zero.
This applies, in particular, to net classical information:

Conservation of Classical Information (CCI):
The net classical information in any closed sys-
tem is zero.

If we consider irreversibly encoded classical informa-
tion, to which Landauer’s Principle [28–30] applies, CCI

clearly follows from the conservation of energy: if the
net energy of a system is zero, the net irreversibly en-
coded classical information in that system can only be
zero. Compliance with CCI is guaranteed if we require:

Exclusive Holographic Encoding (EHE): Clas-
sical information is encoded only on holo-
graphic screens.

Indeed the informational symmetry of holographic en-
coding renders EHE and CCI equivalent. Both can be
viewed as “no collapse” principles that render classical in-
formation strictly ancillary to the closed-system dynamics
HU . Classical information encoded on B is not, however,
ancillary to either of the separated systems A or B; this
encoded information is input to, or dually output from,
A or B by Eq. (3). From the perspective of either A or B,
B encodes N , 0 bits of classical information whenever
HAB , 0. This is true, for some positive value of N, for
any tensor-product decomposition of any closed system
U that meets the separability criteria that allow writing
Eq. (3). Hence we can restate EHE as:

Relativity of Classical Information (RCI): All
classical information is decomposition-relative.

We will see below that RCI renders both all observ-
able “systems” and all classical memory observer-relative.
It thus generalizes the idea — that appears in relative-
state [31, 32], relational [33], and QBist [34, 35] ap-
proaches to quantum theory — that quantum states are
observer-relative to quantum systems and, critically, to
all classically-encoded records of previous observations.
It thus renders all such systems and records observer-
dependent and hence “non-objective.” There is, however,
from a theoretical perspective nothing controversial about
RCI; it merely restates the Axiom of Unitarity. We sug-
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gest, as Bohr [36] and Mermin [37] have before us, that
“what quantum theory is trying to tell us” is precisely RCI.

2.3 Classical encoding requires free
choice of basis

Writing Eq. (3) requires choosing the basis vectors |ik⟩,
where again k = A or B. In the physical realization of
B as a qubit array shown in Fig. 1, choosing the |ik⟩ is
choosing, for each of A and B, the z axis used to measure
sz for each of the qi. This choice determines, for each of
A and B, which of the 2N eigenvalues of HAB is encoded
on B. Choosing the |ik⟩ is, therefore, effectively choosing
the zero-point of energy for each of A and B. These zero
points can clearly be different.

Free choice of the |ik⟩ by us as theorists is equivalent,
operationally, to free choice of |iA⟩ and |iB⟩ by A and B,
respectively. “Free choice” is standardly interpreted as
freedom from local determinism, e.g. by events in the past
light cone [38]; while unitarity of closed-system (e.g. U)
evolution can be read as a form of superdeterminism [39],
this is fully consistent with local free choice by open
systems such as A or B. In the present context, free
choice of |iA⟩ and |iB⟩ by A and B, respectively, requires
that neither |iA⟩ nor |iB⟩ is fixed by the classical data
encoded on B, the only data available to either A or B.
As choosing the basis is prerequisite for assigning values
to these data, this condition clearly holds.

It is useful, however, to consider the conditions under
which free choice of basis fails for either A or B. Suppose
B’s choice of |iB⟩ determines |iA⟩. As the classical data
encoded on B cannot determine |iA⟩, this situation can
occur only if A’s choice of basis |iA⟩ depends on the state
|B⟩, i.e. it can occur only if A and B share quantum
information. In this case, however, the joint state |AB⟩
is no longer separable and Eq. (3) no longer holds. Free
choice of basis is, therefore, required for separability
and hence for the GHP. We will see below that this has
significant consequences for the theory of measurement.

3 The GHP enables a fully-general
quantum theory of measurement

3.1 Measurement produces
finite-resolution, classical outcomes

Quantum theory is traditionally considered to have a
“measurement problem”; indeed since Schrödinger first
introduced his cat [40–43], an enormous literature has
devoted itself to the question of how observers can obtain
classical information from a quantum world (see [44] for
a thorough review and [45] for a recent compendium of

philosophical positions). We will, in this section, employ
quantum theory and the GHP to construct a fully-general
theory of measurement; this construction was developed
in [12–17], to which readers are referred for further de-
tails. We show in [18] that this theory reduces, in its
classical limit, to the well-established theory of active
inference derived from the classical free-energy princi-
ple [19–23]. We suggest that this holographic quantum
theory of measurement obviates the traditional measure-
ment problem, though aside from the brief comments
made earlier, we defer discussion of its relations to any of
the plethora of philosophical interpretations of quantum
measurement to future work.

The goal of measurement is to obtain recordable, re-
portable observational outcomes that can be compared to
the outcomes of measurements carried out at other times
or by other observers. Such measurement outcomes must
be encodable in a thermodynamically irreversible way as
classical information on classical memory devices, e.g.
pieces of paper, transistor arrays, or weight values on
connections in a neural network. As thermodynamically
irreversible classical encoding has a finite energy cost of
at least ln(2) kBT per bit [28–30], any such observational
outcome must be encodable as a finite bit string. This
is in fact obvious – no physical apparatus has infinite
resolution – but is often neglected when observational
outcomes are represented by unrestricted real numbers.

A theory of measurement must, therefore, address three
questions:

• It must provide a formal mechanism for mapping
physical interactions to finite classical encodings of
observational outcomes.

• It must provide a formal mechanism – operationally,
a semantics – that enables encoded observational
outcomes to be meaningfully compared.

• It must provide a mechanism that supplies the free
energy required to support irreversible classical en-
coding.

A theory of measurement must, in other words, enable
saying what it means, both operationally and thermody-
namically, to claim to have measured a length of 0.300 ±
0.001 m by interacting with a wooden board via a meter
stick, and then to have written down the result on a piece
of paper.

The GHP addresses these questions precisely by local-
izing available classical data, available recordable mem-
ory, and available free energy to the single boundary B.
This co-localization of informational and thermodynamic
resources to B has three immediate consequences:
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• A proper subset or sector F of the bits encoded on B
are accessible to an “observer” A only as free energy
that can be employed to fund processing other inputs
or writing data to memory.

• Any observational outcomes recorded by A must
be written on B, and are therefore exposed to the
“world” B.

• Obtaining new observational outcomes and record-
ing previous ones compete for free energy resources,
with the measurement resolution and hence allocated
numbers of bits as the tradeoff parameter.

The GHP requires, in other words, that “observers”
be treated as physical systems subject to resource con-
straints. The symmetry between state preparation and
measurement required by Eq. (3), moreover, renders B
informationally symmetric: A and B both have access to
exactly the same N qubits. Assigning the labels “observer”
or “world” to A or B is, therefore, for convenience only.
The two parties to any interaction described by Eq. (3)
have exactly the same roles as physical systems. This
has a further important consequence: the classical idea of
“passive observation” is ruled out in principle. Obtaining
information from B requires acting irreversibly on B, ex-
pending free energy in the process. As Wheeler [46] put
it, “No question? No answer!”

3.2 Measurements are given meaning by
quantum reference frames

Observational outcomes are rendered comparable, and
hence physically meaningful, through the use of refer-
ence frames (RFs). Outcomes of length measurements,
for example, are rendered comparable and hence mean-
ingful by being assigned units, meters, that refer to the
standardized definition of a meter, and via this to the
intrinsically-spatial concept of the speed of light. Op-
erationally, any RF attaches units of measurement, and
hence a semantics, to an observational outcome. Outside
of metrology or the laboratory, the physical implemen-
tations of RFs are often neglected in classical physics.
When considered in the context of quantum theory, any
RF must be physically implemented by a quantum system
and therefore must be considered a quantum reference
frame (QRF) [47, 48]. Meter sticks, clocks, even the
Earth’s gravitational and magnetic fields are physically-
implemented RFs and hence are QRFs, as are all items of
laboratory apparatus.

Let Q be a QRF with an internal dynamics HQ. As
emphasized by [48], by virtue of being a quantum system
Q encodes “nonfungible” information, i.e. information

that cannot be written as a finite bit string. This nonfungi-
ble information can be thought of as the quantum phase
information encoded by an instantaneous pure state |Q⟩.
The existence of this nonfungible information indeed fol-
lows from the GHP: the information about Q obtainable
by any external observer A is limited to the eigenvalue
of HQA finitely encoded on their mutual boundary. This
finite encoding does not, in principle, fully specify HQ.

Operationally, any QRF Q is a physical implementation
of a quantum computation:

Q : {0, 1}n ⇄ {0, 1}m (5)

that reversibly maps between “raw” data representable
as n-bit strings and meaningful observational outcomes
representable as m-bit strings, with the forward map-
ping implementing measurement and the reverse map-
ping implementing preparation. As developed in previous
work [14, 15] and proven in the general case in [17], any
such computation can be given a category-theoretic rep-
resentation as a Cone-Cocone Diagram (CCCD):

A1 g12

g21 // A2oo
g23

g32 // . . . Akoo

C′
h1

hh

h2

OO

hk

55

A1

f1

66

g12

g21 // A2oo

f2

OO

g23

g32 // . . . Akoo

fk

ii (6)

where the nodes Ai are Barwise–Seligman [49] classi-
fiers. The node C′ is a Barwise–Seligman classifier that
is both the colimit of the incoming arrows f j and the
limit of the outgoing arrows h j, and all arrows are mor-
phisms (“infomorphisms”) between such classifiers [50].
A Barwise–Seligman classifier implements a satisfaction
relation ⊩A between “tokens” and “types” in some lan-
guage. Letting the tokens be bit strings in {0, 1}n and the
types be bit strings in {0, 1}m, we can consider ⊩A to be
given by an n×m real matrix Pi j, where each element pi j

represents the probability that the ith token belongs to the
jth type [15, 17]; when all pi j ∈ {0, 1}, binary classifiers
as originally defined in [49] are recovered. LettingA and
B be classifiers with tokens in Tok(A) and Tok(B) and
types in Typ(A) and Typ(B), respectively, an infomor-
phism is a pair of maps

−→
f and

←−
f such that the following

diagram commutes:

Typ(A)
−→
f // Typ(B)

⊩B

Tok(A)

⊩A

Tok(B)
←−
foo

(7)

Infomorphisms thus provide informational ‘semantic co-
herence’ between classifiers, and are further amenable as
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such when the local logics of a (regular) theory are taken
into account to create logic infomorphisms [49, §12] (re-
viewed in [50]). From the category-theory perspective,
Barwise–Seligman classifiers along with infomorphisms
form a category isomorphic to that of Chu spaces with
Chu morphisms, the latter category having been originally
formulated by Barr and his student Chu [51]. Thereafter,
significant developments in both the theory and applica-
tions of Chu spaces were undertaken by Pratt, mainly
within theoretical computer science and conceptual mod-
eling (see e.g. [52–54], and the review in [50]).

Commutativity of CCCDs, i.e. diagrams of the form
(6), is guaranteed by the definition of C′ as both a limit
and a colimit of infomorphisms to and from theAi. Such
diagrams can be arbitrarily elaborated by the addition
of intermediate “layers” of classifiers with appropriate
incoming and outgoing infomorphisms provided this com-
mutativity condition is respected [18, 55]. CCCDs are
naturally interpreted as automorphisms {0, 1}k → {0, 1}k

implemented by passage through a constraint network
having the classifier C′ as its apex; they can be inter-
preted as implementing variational auto-encoders (VAEs)
or arbitrary Bayesian networks as discussed in [18, 55].
More generally, they can be taken to represent most types
of functional (directed) graph networks along with their
underlying quiver representations [56] as applied in [17].

Non-commutativity of CCCDs, typically when C′ is
undefinable for any hierarchical Bayesian network, for
instance, is a compelling separate issue affording criteria
for intrinsic or quantum contextuality as formulated by
the results of [55, §7] and [17, §7.2] (cf. [57–59]). Es-
sentially, such criteria involve the non-existence of any

“globally” definable (conditional) probability distribution
across all possible observations. Regarding this separate
issue, there is much to be said (and to be amplified else-
where) in light of the non-commutativity results which are
closely tied in with the development of the GHP and QRF
formalism as presented here. For now, let us briefly com-
ment upon the relevance: non-locality in QFT is a special
case of quantum contextuality (see e.g. [35, 60, 61] for
summaries of the Bell–Kochen–Specker theorems). In the
quest for designing robust, fault-tolerant, massive-scale
performing quantum computers, quantum contextuality
turns out to be an essential resource for quantum-speed up,
encompassing such powerful techniques as magic state
distillation (MSD) [61], and related quantum computation
by state injection (QCSI), as established for qubits relative
to measurement-based quantum computation [62].

The “raw data” available to any QRF Q implemented
by an observer A are the eigenvalues +1 or −1 returned
by some subset of the operators MA

i . We can, therefore,
represent any such Q as a CCCD “attached” to the bound-
ary B as shown in Fig. 3. The measured bits are prepared

by the action of the “world” B’s corresponding operators
MB

i ; the CCCD acts back on the measured bits to prepare
them for subsequent measurement by B, preserving the
symmetric, cyclic interaction required by Eq. (3).

The classifierAi accepting an input of +1 or −1 from
the measurement operator MA

i can be defined to execute
any function φ : {1,−1} → [0, 1], i.e. to assign any prob-
ability value. Operationally, therefore, the classifier Ai

acts as the local z axis with respect to which the qubit
qi on which MA

i acts is measured or prepared. This is in
fact obvious: the local z axis must itself be a physically-
implemented one-bit QRF. Choosing the local z axis is,
as discussed earlier, equivalent to choosing the basis in
which the MA

i are expressed. Free choice of basis for
the MA

i implies, therefore, free choice of QRFs; a QRF
acting on the outputs of a subset of operators MA

i . . . MA
k

effectively sets the local basis for these operators. Free
choice of QRFs enables observers to treat the data en-
coded on different components of their boundaries dif-
ferently, and hence to distinguish “systems of interest”
from their surrounding environments. Formally, imple-
menting a QRF Q breaks the S N swap symmetry of B
by assigning the qubits measured by the MA

i . . . MA
k the

functional role of “inputs” to Q. Free choice moreover
entails, consistent with the discussion in §2.3 above, that
A and B can choose different QRFs, and hence both pro-
cess and prepare states of B in different ways. Sharing
QRFs across B induces entanglement [15, 18], a point to
which we will return in §4.2 below.

3.3 Observable systems and their pointer
states are defined by QRFs

Consider a simple and canonical case of measurement: at
some time ti, a human observer A measures the time-
dependent pointer state |P⟩, or at lower resolution a
pointer-state density ρP, of some system S of interest,
e.g. an item of laboratory apparatus. For S to be measure-
able, it must be part of A’s observable “environment” E.
Prior to measuring |P⟩, the observer must identify S , dis-
tinguishing it from the rest of E, including other items
of apparatus that are not S as well as the rest of the lab-
oratory and beyond. This identification process cannot
depend on the state |P⟩, which is of interest as a mea-
surement target precisely because it is both unknown and
time-dependent. Identification instead depends on some
“reference” degrees of freedom of S , e.g. its size, shape,
color, labeling, or location, that are time invariant, i.e.
that maintain some constant state |R⟩ or state density ρR.
Fig. 4 illustrates this commonplace scenario.

The data specifying the state |E⟩ of the undifferentiated
environment, and the state |S ⟩ = |R⟩|P⟩ of the identified
system of interest to A, can only be proper subsets or sec-
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Figure 3: Attaching a Cone-Cocone Diagram (CCCD) to a subset of measurement operators MA
k , . . .M

A
n by identifying the

binary eigenvalues of the MA
i with binary inputs to theAi. Only the incoming arrows are shown for simplicity; adding equivalent

but reversed outgoing arrows completes the CCCD. The CCCD specifies a function computed by the internal dynamics HA, i.e.
a quantum reference frame (QRF) deployed by A. Adapted from [15].

tors of the data encoded on B and measured by the MA
i .

These sectors must, moreover, be disjoint from the ther-
modynamic sector F from which A extracts sufficient free
energy to support any classical information processing.
We can, therefore, identify proper subsets of operators
ME

i , MR
i , and MP

i , dropping the superscript A to simplify
the notation. The outputs of these subsets of operators
are processed by QRFs that can be labeled E, R, and P
without ambiguity; the sectors specifying the states |E⟩,
|R⟩, and |P⟩ are simply the domains of the operators ME

i ,
MR

i , and MP
i , respectively, and hence of these QRFs. The

fact that S is part of E requires that {MR
i }, {M

P
i } ⊂ {M

E
i }

and, therefore, that R and P are proper components of E.
Co-measurability of R and P requires that R and P are
decoherent both from each other and from the remainder
of E [13–15].

Developing a model of the behavior of P that enables
predictions of future states requires, at minimum, writ-
ing measurements of |P⟩ taken at multiple times to some
classical memory. Typically at least some of the ambient
background conditions encoded in |E⟩ as a whole are also
written to memory. Like any physical system with which
an observer interacts, a memory Y must be identified be-
fore being written on or read from. The considerations
adduced above for any system S thus apply equally to
any memory Y . The basic elements of a quantum theory
of measurement can, therefore, be depicted as in Fig. 5.
They include not only the QRFs discussed here and the
thermodynamic flows that power them, but also a time
QRF that provides a measure of duration between writes
to memory and hence an effective time stamp. This time-
keeping system will be discussed further in §4 below.
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System S
A B

A B

Reference R Pointer P
R Ptime invariant time varying

A B

A B

Figure 4: Identifying a system S requires identifying some proper component R that maintains a constant state |R⟩ (or density
of time-averaged samples ρR) as the “pointer” state |P⟩ (or density of time-averaged samples ρP) of interest varies. Adapted
from [14].

The “picture” of measurement illustrated in Fig. 5 dif-
fers in significant ways from that introduced by von Neu-
mann [27] and reproduced in most textbooks. Most ob-
viously, it treats the observer as a physical system with a
particular functional architecture, not as an abstraction. It
enforces, via the GHP, the requirement of separability be-
tween the observer and the world being observed; without
this, the observer lacks a conditionally-independent state
and the idea of “measurement” becomes meaningless.
The GHP also restricts the observer’s access to the “bulk”
degrees of freedom of the world: the operators HA

i act not
on the Hilbert space HB of B, but on the much smaller
effective Hilbert space HA

B of the boundary B. This ren-
ders all observed “systems” observer-relative and hence
“personal” in the sense emphasized by QBists [34, 35].
Observed “systems” here include memory devices and,
significantly, other observers; hence the theory of mea-
surement requires a physical theory of classical communi-
cation that has yet to be fully developed [15, 18]. Perhaps
most subtly, Fig. 5 involves no assumption of a back-
ground spatial embedding. It treats 3d space as a QRF
that A may or may not be capable of deploying. Hence
Fig. 5 is consistent with approaches to quantum gravity
in which spacetime is fully emergent from underlying

informational or other processes. The field theory that
naturally follows from Fig. 5 is, therefore, a topological
quantum field theory (TQFT), not a QFT on a background
spacetime.

3.4 Sequential measurements induce
TQFTs

We have shown in [17] that given the GHP, sequential
measurements of any sector S of a holographic screen
B induce a TQFT on S . We also show how this TQFT
can be realized as a quantum topological neural network,
a generalized representation of a standard deep-learning
system [63]. Here we briefly summarize the main result
and mention some of its consequences, referring readers
to [17] for details.

A TQFT can be represented as a functor from the cat-
egory of cobordisms to the category of Hilbert spaces
[64, 65]. We prove in [17] that any QRF can be repre-
sented as a CCCD, and then construct a category with
CCCDs as objects and morphisms of CCCDs, which must
by definition respect the commutativity of CCCDs as di-
agrams, as morphisms. The category is, effectively, a
category of QRFs, in which the morphisms represent se-
quential choices of QRF to be applied to the data encoded
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Figure 5: Cartoon illustration of quantum reference frames (QRFs) required to observe and write a readable memory of an
environmental state |E⟩. The QRFs E and Y read the state from E and write it to the memory Y respectively. Any identified
system S must be part of E. The clock Gi j is a time QRF that defines the time coordinate tA. The dashed arrow indicates
the observer’s thermodynamic process that converts free energy obtained from the unobserved sector F of B to waste heat
exhausted through F.

on some sector S . We show that all such choices can be
represented by one of two diagrams. Using the compact
notation

S (8)

to represent a QRF S , we can represent measurements of

a physical situation in which one system divides into two,
possibly entangled, systems with a diagram of the form

S

S 1

S 2

(9)

Parametric down-conversion of a photon exemplifies this kind of process. The reverse process can be added to yield:

S

S 1

S 2

S S (10)

Diagram (10) represents a relabelling of subsets of the base-level classifiers that act on the sector S :

A1,A2, . . .Am︸             ︷︷             ︸
S

→ A1, . . .Ai,︸       ︷︷       ︸
S 1

Ai+1, . . .Am︸         ︷︷         ︸
S 2

→ A1,A2, . . .Am︸             ︷︷             ︸
S

(11)

In the second type of sequential measurement process, the pointer-state QRF P is replaced with an alternative QRF Q
with which it does not commute. Sequences in which position and momentum, or spins sz and sx are measured
alternately, are examples. These can be represented by the diagram

S

P

R

S S

Q

R

S (12)

Quanta | DOI: 10.12743/quanta.v11i1.206 November 2022 | Volume 11 | Issue 1 | Page 82

http://dx.doi.org/10.12743/quanta.v11i1.206


Again this can be written as a relabeling of classifiers, leaving the pointer-state classifiers that are traced over when
measuring only the reference component R for system identification implicit, as:

A1,A2, . . .Ak︸            ︷︷            ︸
R

→ A1, . . .Ak,︸       ︷︷       ︸
R

Ak+1, . . .Am︸          ︷︷          ︸
P

→ A1, . . .Ak,︸       ︷︷       ︸
R

Ãk+1, . . . Ãm︸          ︷︷          ︸
Q

→ A1,A2, . . .Ak︸            ︷︷            ︸
R

(13)

where the notation Ãl indicates that Al has been rewritten in a rotated measurement basis, e.g. sz → sx or
x→ p = m (∂x/∂t). As both P and Q must commute with R, the commutativity requirements for S are satisfied.

Measurement sequences of the form of Diagram (10) can be mapped to cobordisms of the form

B

S

B

S
S 1

S 2

S

S1

S2

F(i) F(k)

F

(14)

while sequences of the form of Diagram (12) can be mapped to cobordisms of the form:

B

P

R

B

S
Q

R

P

R

S

Q

R

F(i) F(k)

F

(15)

In either case, F : CCCD→ Cob is the required functor from the category CCCD of CCCDs to the category of
Cob finite cobordisms. In general, we can state the following theorem.
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Theorem 1. For any morphism F of CCCDs in CCCD,
there is a cobordism S such that a diagram of the form
of Diagram (14) or (15) commutes [17, Theorem 1].

Proof. Please refer to [17] for the complete proof. □

Theorem 1 has a number of immediate consequences,
chief among which is that any effective field theory de-
fined on S must be gauge invariant [16, 17]. The GHP,
therefore, not only generates a default physical theory – a
TQFT – of any observable system, but strongly restricts
any geometrization of that theory. Indeed the results ob-
tained in [17] strongly suggest that observable spatial ge-
ometry, including the Minkowski metric and the Einstein
equations of general relativity, is induced by symmetries
of the QRFs employed to identify observable systems as
such over time. If this proves to be the case, it will recon-
ceptualize “space” as a quantum informational structure
even at macroscopic scales.

4 The GHP provides local
definitions of entropy and time

4.1 Operations on B implement Wick
rotations

The GHP generalizes the Bekenstein area law [2] to a
statement applicable to any boundary B implementing
an interaction HAB between finite, separable systems, i.e.
an interaction that can be written as Eq. (3):

A boundary B implementing an interaction
HAB between finite, separable systems has ther-
modynamic entropy S Th(B) = N, where N is
the dimension of HAB.

Geometrization of B then requires N ≤ A(B)/4 as dis-
cussed in §2.1 above. The S Th(B) is thus conceptually
an entropy as defined by Shannon [66, 67]: the width of a
classical communication channel.

Unlike S Th(B), the thermodynamic entropy S Th(B) of
the physical system B is neither specified nor restricted
by HAB. From A’s perspective, however, B is a source
of both usable free energy and classical information as
illustrated in Fig. 5 . Relative to A, therefore, S Th(B)
cannot decrease, i.e. B cannot become a free-energy or
classical-information sink. The 2nd Law thus holds for A,
independently of either HB or of any details of A’s mea-
surements or estimates, if any, of the future uncertainty
of B’s behavior. The informational symmetry of B guar-
antees the same is true for B: relative to B, S Th(A) cannot
decrease. This observer-relativity of thermodynamic en-
tropy has previously been emphasized by Tegmark [68].

As discussed in §3.3 above, the idea of sequential mea-
surement, and hence the idea of recordable time, is only
physically meaningful for observers able to write data
irreversibly to a classical memory. The action of writ-
ing to a memory sector Y defines an A-specific, local
time QRF tA as illustrated in Fig. 5. The most natural
unit of tA is the minimal time to write one bit, to which
time-energy complementary gives a minimum value of
h/[ln(2)(KBT A)], with h being the Planck’s constant. The
bit-counting process can be implemented by an operator
Gi j that advances tA by one unit i → j; formally, Gi j

is a groupoid element [14, 15]. The rate at which A’s
“clock” Gi j “ticks” is determined by A’s thermodynamic
efficiency.

The local time QRF tA is clearly entropic: it counts
recordable information received from B and hence in-
crements as (A-relative) S (B) increments (see [69] for a
similar account of entropic time). Thus it is natural to in-
terpret the measured time tA as “flowing” with the passage
of information from B to A. The informational symmetry
of B allows us to represent tB in the same way, as illus-
trated in Fig. 6. We can, therefore, see the GHP as giving
a physical meaning to the Wick rotation [70], namely to
the prescription that “inverse temperature is imaginary
time”: a measurement operation performed by A on a
qubit received from B induces the “collapse” of the qubit
into a certain eigenstate ε, namely |q⟩t → e−ıεt|ε⟩ ∼ |ε⟩,
where we can write |ε⟩ as a pure state because its time-
phase dependence is not observable. The pure state hence
recovered by the QRF of A represents the element of clas-
sical information that is processed thermodynamically
on B, hence subjected to a thermodynamic distribution
e−ε/(KBT ). Encoding of information can be seen therefore
as a Wick rotation ıεt → ε/(KBT ). A further such process
of “reading” performed by B can be understood as a back-
ward evolution in time of the qubit before irreversible
encoding happens, or as an evolution of the missing (vir-
tual, because of irreversible encoding has happened) qubit
of energy −ε. This virtual evolution of a “hole”-like qubit
would in turn correspond to a second Wick rotation, with
same axis of rotation, reverting the axis of time. In other
words, each operation on a qubit of B rotates the local
time vector by −→ı , so a combined cross-B write-read oper-
ation in either the B-to-A or A-to-B direction implements
−→ı twice and reverses the local time direction. Energy-
momenta and angular momenta are not conserved during
the encoding process: the energetic cost of the rotation is
rather understood in terms of an irreversible bit encoding,
i.e. at least ln(2)(KBT A).

Fig. 6 shows that any system A satisfying the separa-
bility conditions required by the GHP can be viewed as
interacting with its own future. Hence any decomposi-
tion U = AB that respects separability can be viewed
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Figure 6: Local times tA and tB flow in opposite directions
across B. Each “write” or “prepare” operation on B thus im-
plements a Wick rotation −→ı of the local time, with a total ener-
getic cost of a combined write-read of at least h/ ln(2)(KBT A).

as decomposingHU along a temporal boundary. When
the boundary B is given the geometry shown in Fig. 2
and hence required to respect covariance, this temporal
decomposition has an obvious interpretation: any separa-
ble system interacts exclusively with its own future light
cone. The implementation of Wick rotation by actions
on B is thus intimately tied to the role of gauge bosons as
information carriers and hence to the Minkowski metric
as a representation of the time dependence of information
flow.

4.2 QRF sharing induces entanglement

Figs. 5 and 6 enable a simple and intuitive understand-
ing of the relation between free choice and separability,
and of the approach to entanglement as these are vio-
lated. Suppose A and B implement QRFs EA, EB and
YA, YB, respectively, such that EA and EB compute the
same function φ and YA and YB compute the same func-
tion ψ. As arbitrarily many distinct physical systems can
compute any given function, this is merely an assumption
of shared classical information processing. Now assume
that dom(EA) = dom(EB) and that dom(YA) = dom(YB),
with dom denoting a function’s domain, i.e. that each pair
of operators acts on a shared subset of encoded bits. This
is a quantum assumption, as it is an assumption about
how EA, EB and YA, YB are implemented by the inter-
nal Hamiltonians HA and HB, respectively. It does not,
however, determine the time dependence of the states
|A⟩ or |B⟩; in particular, it does not force A’s data writes
to dom(YA) = dom(YB) to synchronize with B’s data
reads. Adding the assumption that tA and tB have equal
periods, however, does force such synchrony. With this

synchronization assumption, A and B update each other’s
memory sectors on each cycle. Components of |A⟩ and
|B⟩ that are memory dependent are, in this case, no longer
conditionally independent. Hence the joint state |AB⟩ is
no longer separable.

Let ρA = trB|ψ⟩⟨ψ| be the reduced density matrix of
A obtained by taking a partial trace over B of the total
density matrix ρ = |ψ⟩⟨ψ| of the joint system AB. Recall
that the (von Neumann) entanglement entropy S(A) of
A in the bipartite decomposition AB is given by (see
e.g. [25, 71]):

S(A) = −trρA log ρA (16)

If the joint state |AB⟩ is no longer separable, the entan-
glement entropy S(AB) is nonzero. In the situation de-
scribed above, we can localize this entanglement entropy
to the particular sector dom(YA) = dom(YB) of the de-
compositional boundary B; in this case its maximum
value is the dimension of this sector, i.e. S(AB)max ∼

dim(dom(YA)) = dim(dom(YB)). In [72, §1] entangle-
ment entropy in the context of the AdS/CFT correspon-
dence can be seen as a wedge observable, meaning that if
spatial regions A and A′ share the domain of dependence,
then dom(A) = dom(A′), and they have the same entan-
glement entropy SAB = SA′B′ since the corresponding
density matrices ρA and ρA′ are unitarily related [73].

Requiring that YA and YB compute the same function
ψ, that dom(YA) = dom(YB), and that tA and tB have
equal periods is, effectively, requiring that YA and YB

are the same QRF. We have previously shown [15] that
QRF replication across a boundary B is forbidden by
the no-cloning theorem [74]. Briefly, the information on
B does not determine |A⟩, so it is insufficient for B to
replicate |A⟩, and hence insufficient for B to replicate any
QRF state |Q⟩ that is a component of |A⟩ [12, 15]. No
cloning of unknown states is, in this and indeed in any
case, a straightforward consequence of the nonfungibility
of quantum information. The above discussion exempli-
fies this: the assumptions that dom(YA) = dom(YB) and
that tA and tB have equal periods can be made only as a
priori stipulations, as neither of these conditions can be
inferred from the data encoded on B. The GHP, there-
fore, provides a mechanism that enforces no-cloning by
restricting the transfer of information between A and B to
the information encoded on B.

These results, together with those of the previous sec-
tions, provide a novel characterization of some standard
concepts, including AdS/CFT as developed by [10] and
others, while working throughout with both the bulk dis-
tribution and the boundary degrees of freedom specified
in terms of binary qubits. There are a number of related
results. For instance, Ryu and Takayanagi [71] start from
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the AdS/CFT correspondence to develop an HP-motivated
derivation of entanglement entropy in d+1-dimensional
CFT as obtainable from the area of a d-dimensional
minimal surface Σ in AdSd+2, a result analogous to the
Bekenstein–Hawking formula for black hole entropy. Re-
lated is the proposal of Lee [75] that entanglement arises
from the HP, in so far that all the information specify-
ing the physics on the holographic boundary is specified
redundantly by entanglement relations within the bulk,
a result which appears consonant with our development
of ideas as presented above. An interesting direction of
research hinges on substituting the AdS bulk with either
a TQFT or an extended version of it, for instance an ex-
tended BF theory. An attempt for an exact holographic
mapping, with emergent space-time geometry recovered
along the lines of [76], has been investigated in [77],
where a relation between loop quantum gravity and tensor
networks has been explored accounting for bulk-boundary
duality and holographic entanglement entropy. From a
genuine TQFT perspective, it would be tempting to ana-
lyze the connection between AdS bulk and BF theories,
with holographic boundaries provided by Chern–Simons
theories with punctures. In lower dimensions, interesting
results have been reported in 2d dimensional spaces with
holographic boundaries involving the SYK model [78,79].
More generally, Wootters [80] reviews entanglement of
pure states (informationally reversible), mixed states (ir-
reversible, since in creating a mixed state from a pure
state some information is forsaken), and entanglement
of formation which is intimately tied to the notion of
computational concurrence where explicit formulas are
available [81–83].

5 Areal elements are scattering
centers

Replacing curved arrows with angled arrows and an ex-
plicit qubit array with B, we can re-draw Fig. 1 as Fig. 7.
Viewing the arrows as depicting information flow as be-
fore, the areal elements of B function as scattering cen-
ters. Inspecting this scattering diagram, two things are
immediately apparent:

• From either A’s or B’s perspective, transmitting in-
formation across B is indistinguishable from scat-
tering information offB.

• Comparing Fig. 6 and Fig. 7, scattering information
offB reverses its temporal direction with respect to
the local time QRF tA or tB.

The first of these points enforces the informational sym-
metry of B and hence enforces unitarity. The second

B

...
Figure 7: Re-drawing of Fig. 1 that represents areal elements
as scattering centers.

requires any “carrier” of information to be its own an-
tiparticle.

Following this idea of information as subject to scat-
tering and representing the total initial and final informa-
tional states of k = A or B as |out⟩k and |in⟩k respectively,
we can write an S -matrix:

S k : |out⟩k 7→ |in⟩k , (17)

where the reversal of the usual order reflects the fact that
information always flows from a preparation device to
a measurement device. This S k is N × N; Figs. 1 and 7
depict it in bases in which it is diagonal. As S k is simply
a representation of Eq. (3) for system k, we have the
expected conclusion:

Every interaction between separable systems
can be represented as scattering.

This conclusion rests solely on the GHP, requiring no
assumptions about an embedding geometry.

Adding the geometry shown in Fig. 2 to B allows B
to be viewed as a “physical” horizon, e.g. the (stretched)
horizon of a black hole, the motivating system of interest
for both the Bekenstein area law and the HP. Fig. 7 then
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represents traversal of or scattering from the horizon as
observed by either the black hole interior B or the external
“rest of the universe” A. Coupled pair production events
near the horizon yield symmetric diagrams of this kind
[15]; hence Fig. 7 is consistent with the observation of
Hawking radiation by an asymptotic observer “embedded”
in A. That the formation and evaporation of a black hole
could be considered a scattering process was originally
proposed by ’t Hooft [84] and has since been given an
explicit formulation [85].

It is important to emphasize that the GHP requires,
and Fig. 7 represents, a fixed decomposition U = AB
for which |AB⟩ = |A⟩|B⟩ and hence fixed Hilbert-space
dimensions for A and B. It does not, therefore, represent
net transfers of degrees of freedom across B. “Collapse”
or “infall” processes and, dually, “evaporation” processes
alter the interior geometry of B but not its Hilbert-space
dimension. The information encoded on B can be altered
by these processes, but the dimension N and the topol-
ogy of B remain invariant. Such topologically-invariant
models of black hole evolution have been developed pre-
viously based on the proposed implementation of entan-
glement by Einstein–Rosen bridges [86–88].

6 HP-like principles appear in
multiple disciplines

We have thus far considered the physical meaning of the
HP, as generalized to the GHP, from the perspective of
quantum information theory. We now broaden this per-
spective to consider principles analogous to the HP that
have been formulated independently in other disciplines.
Such principles have received wide-spread application,
suggesting that the HP is in fact a general principle of not
just of quantum theory, but of all of science.

6.1 Markov blankets and the free-energy
principle

The idea of a Markov blanket was formulated by Pearl
[89] to capture the emergent conditional independence of
disjoint components of finite causal networks with Marko-
vian dynamics, represented as directed acyclic graphs
(DAGs), by judiciously defining the boundaries of the
systems in question. The Markov blanket of any node
or subnetwork X of such a causal network comprises all
nodes that are parents of X (i.e. nodes with arrows to X),
children of X (i.e. nodes with arrows from X), or other
parent’s of X’s children, as shown in Fig. 8. All informa-
tion exchanged between the node or subnetwork X and
the nodes exterior to its Markov blanket must traverse
the Markov blanket; the Markov blanket thus functions

as a finite classical information channel between X and
its external “environment” E. If the condition that the
network be a DAG is relaxed, the Markov blanket re-
mains a set of “boundary” states that causal connections,
and hence information exchange, between X and E must
traverse. The separation between X and E imposed by
the Markov blanket renders them mutually conditionally
independent. In many applications, the Markov blanket
is partitioned into sensory and active states mediating the
influence of external upon internal states, and vice-versa.
Specifically, external states act on sensory states which
influence, but are not influenced by, internal states. Inter-
nal states couple back via active states which influence
but are not influenced by external states [90, Table 1].

Friston [22] has shown that any random dynamical sys-
tem equipped with a Markov blanket – and implicitly a
nonequilibrium steady-state (NESS) solution necessary
to define the Markov blanket – has an internal dynamics
that is conditionally independent of the environmental dy-
namics. This means it will continuously “self-evidence”
by returning its state to (the vicinity of) its NESS. Satis-
fying these conditions is required of any system that is
observable as such over time, i.e. any system for which
sequential measurements as considered in §3.4 are well
defined. Such systems can be described as minimizing
a variational free energy functional that effectively mea-
sures their uncertainty about their environment’s future
behavior. The free-energy principle is the statement that
any random dynamical system meeting the above two
conditions, i.e. any system for which sequential measure-
ments are possible, will behave in a way that asymptoti-
cally minimizes its detected variational free energy. This
way of characterizing random dynamical systems gives
rise to a “Bayesian mechanics” [23] that reformulates
classical physics in decision-theoretic language within a
scale-free computational architecture that is applicable,
in principle, from the molecular and cellular levels up to
the cosmological. In such a model, aptly described as
Bayesian selection, natural selection itself can be viewed
as structure learning based upon the model evidence en-
coded by some phenotype [90].

Using the tools reviewed in §3 above, we have shown
[18] that the free-energy principle can be reformulated for
generic, finite quantum systems meeting the separability
required by Eq. (3). The Markov blanket is, in this case,
implemented by a holographic screen B compliant with
the GHP. Strict minimization of variational free energy
drives systems to share QRFs across B, i.e. drives them to
entanglement as discussed in §4.2 above. The free-energy
principle is, therefore, asymptotically a restatement of the
Axiom of Unitarity.
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Figure 8: a) The Markov blanket of a node X in a causal network comprises the parents and children of X together with any
other parents of X’s children. b) The Markov blanket is effectively an information channel separating X from its environment E.
Based on [91].

6.2 Multiple realizability and virtual
machines

The foundational principle of computer science is the
Church–Turing thesis, which states that any computable
function can be computed by the λ-calculus [92] or a
Turing machine [93]. While the Church–Turing thesis is
often regarded simply as establishing two universal mod-
els of computation, at a deeper level it states the multiple
realizability of computation: any process that emulates,
or can be emulated by, the λ-calculus or a Turing machine
can be considered a computational process. The Church–
Turing thesis thus underlies a definition of computation
in terms of emulation: any process that can be (usefully)
interpreted as a computation is a computation [94].

As emphasized in [94], interpreting a physical
process as a computation relies on finite-resolution
observations of some finite number of sequential states.
A process useful as a computer must, moreover, allow
manipulations that return it to some (quasi-) stable state
from which it can be perturbed into a set of distinct
“input” states. Whether an arbitrary such system will
reach a (quasi-) stable state and hence “halt” after a finite
number of computational steps from some finite input
cannot be determined algorithmically [93]; this is the
Halting problem [95]. Whether a finite, step-by-step
description of the observed behavior of an arbitrary
system following any one or more of some circumscribed
set of input perturbations specifies a computation of
some nontrivial function is similarly algorithmically
undecidable (Rice’s theorem [96]).

The concept of a “black box” formulated in classical
cybernetics provides an alternative statement of multiple
realizability that does not depend explicitly on the theory
of computation [97]. A black box is similarly a physical
system that permits finite numbers of finite-resolution
perturbations and observations. The interior of the black
box is considered to contain a “machine table” that deter-
mines the next output given the history of inputs. Finite
sequences of perturbations and observations are insuffi-
cient to determine the machine table of an arbitrary black
box (Moore’s theorem [98]).

In practice, multiple realizability allows multiple dis-
tinct hardware architectures to compute the same func-
tions, and multiple programming languages with widely
differing syntax and semantics to have the same computa-
tional power. It enables layered computing architectures
in which each layer treats the layers both above and below
as virtual machines that have specified, finite application
programming interfaces (APIs) but are otherwise uncon-
strained in implementation [99]. The top-level virtual
machine is the user interface, which allows the user fi-
nite manipulations and observations of the behavior of
the underlying architecture while “hiding” implementa-
tion details. While the implementation details of practical
computers are accessible in principle, reverse-engineering
them from behavioral observations becomes increasingly
difficult as the depth of architectural layering increases,
and rapidly becomes intractable if components are dis-
tributed across a network that supports asynchronous com-
munication.

As quantum systems, quantum computers encode non-
fungible information, rendering the reverse engineering
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problem unsolvable in principle. Quantum artificial neu-
ral networks generalize classical artificial neural net-
works, which are Turing equivalent. Conventional quan-
tum neural networks can be further generalized to topo-
logical quantum neural networks, which as structured
as spin networks, are tensor network representations of
TQFTs, and hence fully compliant with the GHP as dis-
cussed in §3.4 above [17, 63]. It is in view of such tensor
networks, and the development of several sections here
in relation to the boundary B (as in e.g §4.2) that further
open up connections with the AdS/CFT correspondence
to be pursued in future work. Enticing is the question: “is
spacetime a quantum error-correcting code?” (reviewed
in [100]). Different slants and interpretations of this ques-
tion are discussed in [100]. For instance, the hypotheses
of [101, 102], involve space in the bulk as emerging from
boundary systems that can realize the structure of a quan-
tum error-correcting code; [103, 104] suggests that the
connectivity of spacetime in the bulk is related to the
entanglement structure of the codespace of a boundary
CFT subject to its quantum error-correcting code.

6.3 Active inference and interface theories

The primary application of the free-energy principle has
been to biological systems, where it underpins the idea
of Bayesian “active inference” in which living systems
increase their predictive power not just through learning,
but also through active manipulations of their environ-
ments [19–21]. This principle of active inference, or
curiosity-driven learning, is both scale-independent and
applicable not just to motions or other actions in 3d space
but also to actions in more abstract state spaces, e.g. those
of the genome or the metabolic system [105,106]. Indeed
we have recently shown that the free-energy principle
drives the high fan-in, high fan-out “neuromorphic” orga-
nization of sensory and effector systems that is ubiquitous
across biology at all scales [107].

The goal of any system employing active inference is
to reduce variational free energy over the long term by
learning to predict how its environment will act on its
Markov blanket. Crucially, enacting self-organization
necessitates the emergence of boundaries defining the
separation of internal from external states [90] (and §6.1
here). Prediction is accomplished by a computational
system that is a generative model, in the sense of the
Good Regulator Theorem [108], of its environment as
represented on its Markov blanket. Such models may
incorporate “metacognitive” components that represent
the system itself, again via the system’s actions on its
Markov blanket, which include memory writes as dis-
cussed in §3.3 above [109]. Active inference systems
have, by definition, no direct access to their environments

beyond their Markov blankets. The Markov blanket acts,
in this case, as a system-environment interface, in the
sense of an API.

Interface theories of perception and action have also
been developed independently of the free-energy princi-
ple, particularly by Hoffman and colleagues [110–112],
who also show explicitly that natural selection processes
do not favor “veridical” perception beyond the inter-
face [113–115]. Both spacetime and perceived “objects”
are explicitly emergent from computational processes
implemented by the perceiving agent – effectively, its
generative model – in this theoretical setting [116].

7 Conclusion

We have shown here that the Holographic Principle,
particularly when generalized to the Generalized Holo-
graphic Principle, is not merely “an apparent law of
physics that stands by itself” but rather a deep, foun-
dational principle. It is a principle of restricted access.
It lays a non-negotiable price on separability: if two
systems are separated by a boundary B, their access
to each other is limited to the information B itself can
encode. When stated in this way, the Holographic Princi-
ple seems shockingly obvious. When its implications for
our ordinary concepts of “objects” and “spacetime” are
pointed out, however, it can seem deeply mysterious. The
idea that classical information is decomposition-relative –
and hence is observer-relative – strongly challenges our
pretheoretical sense of an “objective reality” shared by
all physical systems. As Wheeler [117] points out, this
challenge lies at the very heart of quantum theory.

What is perhaps most significant about the Holographic
Principle, however, is its emergence over the past century
as a foundational principle not just of physics, but of all
disciplines that directly address information transfer be-
tween separated systems. The conditions imposed by the
Holographic Principle apply, in particular, to transfers of
information between any observers, including scientists,
and the systems being observed. Its ubiquity thus speaks
simultaneously to the fundamental unity of science and
to its fundamental limitations as an empirical enterprise.
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Appendix: Glossary of terms

Brief definitions of technical terms are given below. For
terms specific to quantum theory, relationships to con-
cepts in classical physics are noted where applicable.

AdS/CFT: A duality between physical theories on a
“bulk” geometry with negative curvature and on its lower-
dimensional boundary.

BF theory: A formulation of a topological quantum
field theory (q.v.) that explicitly represents the curvature
of the manifold of operators.

Category: An abstract representation of a “kind” of
mathematical system, e.g. the category of sets, groups,
or fields. Formally, it is a set of “objects” and a set
of “morphisms” between the objects such that (1) every
object is associated with a unique “identity” morphism,
and (2) morphisms compose associatively.

Chern–Simons theory: A particular representation
of a topological quantum field theory (q.v.) that describes
physics on a 2-dimensional boundary.

Closed system: A system that is isolated, i.e. does
not interact with any other system, including any envi-
ronment or observer. Closed systems are theoretical ab-
stractions, as they are unobservable by definition. Any
system that interacts with any other system, including any
observer, is “open” or non-isolated.

Cobordism: A relationship between smooth topologi-
cal spaces (manifolds) that holds whenever two distinct
manifolds together comprise the boundary of a third man-
ifold.

Covariance: The principle that physical relations are
independent of the coordinate system used to represent
them. Special and general relativity result from requiring
covariance in descriptions of velocities and accelerations.

Entanglement: The characteristic of quantum sys-
tems that most distinguishes them from classical systems.
A state is entangled if and only if it is not separable (q.v.).
If a bipartite system AB is in a maximally entangled state,
maximal knowledge of the entangled state |AB⟩ implies
maximum uncertainty about the individual states |A⟩ and
|B⟩ of its components.

Entropy (thermodynamic): A measure of uncer-
tainty about the state of a system. For any system X, the
thermodynamic entropy S Th(X) =def logNX where NX is
the number of in-principle observably-distinct states that
X can occupy. Taking the logarithm base two gives units
of bits, and counts the number of binary-valued (yes/no)
states that X can occupy.

Entropy (entanglement): A measure of the depar-
ture of a system from separability. A maximally-
entangled two-qubit system (e.g. a Bell/Einstein–
Podolsky–Rosen state) has entanglement entropy S = 1.
Any separable state has S = 0 by definition.

Decoherence: Any procedure that renders entangle-
ment between a system and its surroundings unobservable.
Decoherence induces separability and hence “effective”
classicality. Decoherence between a system and its envi-
ronment is equivalent to conditional independence of the
system from its environment.

Free Energy Principle: The principle that time-
persistent physical systems evolve so as to (asymptot-
ically) minimize the variational free energy measured
at their boundaries. Intuitively, it is the principle that
systems evolve to maximize their ability to predict their
environments’ actions on their boundaries.

Functor: A mapping between categories that respects
identities and associativity of morphisms.

Hamiltonian: In quantum theory, an operator whose
eigenvalues encode the total energy of an interaction, in-
cluding the self-interaction of a single system. In classical
physics, it is a function representing the total (kinetic plus
potential) energy of a system. It contrasts with the La-
grangian, which represents the kinetic energy minus the
potential energy.

Hilbert space: A vector space specifying the possible
states of a system, the basis vectors of which are the
possible values of each degree of freedom of the system.
In quantum theory, each normalized vector (vector of
length one) in the Hilbert space of a system X is a possible
pure state |X⟩ of X.

Markov blanket: A set of “boundary” states in a state
space through which all causal interactions between two
systems must pass.

Mixed state (state density): A classical ensemble
of pure states of a quantum system, characterized by a
probability density of outcomes for any measurement
definable on the system.

Pointer state: The state “of interest” in a quantum
measurement, named for the pointer on an analog volt-
meter or similar device.

Pure state: A state described as precisely as a theory
allows. In classical physics, a pure state may be specified
by a precise position and momentum. In quantum theory,
a pure state is a normalized vector (a ray) in a Hilbert
space.
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Quantum reference frame: A physical system em-
ployed to make a measurement, e.g. a meter stick or
clock.

Qubit: A two-state quantum system, e.g. an electron
spin that can be observed to be either up or down with
respect to any arbitrarily-chosen axis. Qubits generalize
the classical unit of one bit.

S-matrix: A representation of the operator transform-
ing an asymptotic initial state of a scattering process into
an asymptotic final state. “Asymptotic” here means, effec-
tively, far enough from the scattering interaction center in
both space and time that the interaction can be considered
an instantaneous point process.

Separable: The characteristic feature of classical sys-
tems. A bipartite state |AB⟩ is separable if and only if
it can be factored, i.e. if and only if |AB⟩ = |A⟩|B⟩. All
classical states are separable: the state of a “part” of a
classical system can always be defined independently of
the state of the entire system. Separability is required
for conditional independence. Quantum states can be
non-separable, i.e. entangled.

Topological quantum field theory: A quantum
field theory formulated independently of geometic as-
sumptions. Formally, it is a cobordism between Hilbert
spaces representing initial and final quantum systems.

Unitary: A transformation that preserves information.
Formally, an operator U such that UU† = 1 or an operator
that is symmetric under time reversal.

Wick rotation: A formal duality between “imaginary”
time ıt (i.e. time “rotated” by the unit ı =

√
−1) and

inverse temperature.
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