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Abstract:  Both standard formulations of the frame problem and standard solutions implicitly assume 
that the re-identification of objects as persisting individuals between pre- and post-action contexts is 
unproblematic.  In the case of human beings, this assumption is false: humans dedicate considerable 
cognitive resources to object re-identification.  An analysis of both the phenomenology and 
neurocognitive implementation of object re-identification is used to show that in humans, all of the 
information architecturally available to solve the frame problem is in fact deployed for object re-
identification.  The frame problem is, therefore, equivalent to the object re-identification problem in the 
case of human problem solving. 
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Introduction

From its introduction by McCarthy and Hayes (1969) through the publication of The Robot's Dilemma 
(Pylyshyn, 1987) and its successor The Robot's Dilemma Revisited (Ford & Pylyshyn, 1996), the frame 
problem occupied center stage as perhaps the foundational problem of artificial intelligence.  All of the 
major conceptual issues, from the nature of semantics to the tractability of planning, seemed to be tied 
up with the seemingly-simple problem of how to walk across the room without worrying about whether 
doing so would change the color of the walls or the air temperature outside.  With the dawn of the 21st 

century, however, active discussion of the frame problem began to wane.  Positions perhaps hardened 
as the AI and cognitive science communities fragmented into more clearly-defined schools of thought, 
with evolutionary psychologists siding with traditional representationalists in viewing heuristic 
satisficing as good enough for all practical purposes, dynamical systems and embodied cognition 
theorists tending to side with ecological realists and phenomenologists in claiming that all 
representational solutions suffer from infinite regress, and thorough-going rationalists claiming both 
that the frame problem is computationally intractable and that its solution by humans proves that 
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human minds are not computational entities.  Recent philosophical discussions tend to defend long-
established positions with only minor elaborations (e.g. Fodor, 2008; Wheeler, 2008; Samuels, 2010). 
A recent review (Shanahan, 2009) succinctly summarizes the conceptual standoff.

What has been largely missing from discussions of the frame problem, even as it affects human 
problem solving, is explicit consideration of neuroscience.  An exception to this is the work of 
Shanahan and Baars (2005), who address the question of how the human brain actually solves – to 
whatever extent it does actually solve – the frame problem in ordinary, resource-limited task 
environments.  Shanahan and Baars address the rationalist worry that belief updating is intrinsically 
isotropic – that any belief can in principle influence the updating of any other belief – by arguing that at 
the level of description relevant to conscious thinking, cognition is isotropic, and that “relevance” is 
determined solely by the amount of attentional amplification a given representation can accumulate 
within the time alloted for reaching a solution.  The present paper poses a complementary question: 
what information about a given belief is considered relevant by default, and how is this information 
represented?  It argues that for humans, the information that is considered relevant by default in any 
problem solving situation involving actions carried out over time is the information required to solve a 
particular instance of the frame problem, the problem of determining whether the identities of the 
objects present in a remembered context are preserved in a newly-encountered context.  Cognitive and 
neuroimaging studies focused largely on human visual object categorization and identification support 
a model in which the pre-motor system constructs unobserved and hence fictive causal histories that 
connect retrieved episodic memories of previous events to current observations (Fields, 2012).  Such 
fictive causal histories (FCHs) must be constructed for every object that is re-identified as the same 
individual that participated in a remembered event.  As discussed below, the relative contributions of 
feature and motion information to FCH construction are sensitively dependent on the time between 
observations, the category of object, and the observational context; “Leibniz's Law” that indiscernible 
objects are identical cannot be treated as the human default for object re-identification, even in the limit 
of very brief gaps in observation.  If the FCH construction model is correct, all of the information that 
is architecturally available to solve the frame problem must be deployed, in humans, to solve the object 
re-identification problem; hence these two problems are equivalent for human problem solvers.  This 
result suggests that the development of AI systems that solve the frame problem in a human-like way 
will require the replacement of the ubiquitous implicit assumptions that objects persist through time 
and are unproblematically re-identifiable using time-stable features with an explicit process that 
determines what objects in any given context are the same individual things that have been encountered 
previously.  Viewed more broadly, it suggests that the assumption that objects are unproblematically re-
identifiable is a gross oversimplification under any circumstances.

The paper is organized as follows.  The next section, “The frame problem and the problem of object re-
identification” distinguishes the traditional formulation of the frame problem in terms of property 
updating from a more radical version that involves the explicit re-identification of objects as persisting 
individual things from one context to the next.  The third section, “How humans visually re-identify 
objects: Phenomenology” reviews the human use of featural and causal information in both short-term, 
within-scene visual object tracking and longer-term, between-scene object re-identification.  The 
discussion focuses on visual object re-identification because vision is by far the best studied sensory 
modality; there are, however, no reasons to suggest that other senses are intrinsically more reliable that 
vision as indicators of object identity.  The fourth section, “How humans visually re-identify objects: 
Implementation” reviews neurofunctional studies that relate object representations at increasing levels 
of integration to activity patterns in distributed networks of anatomically-characterized structures.  It 
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describes how humans deploy categorical constraints to construct FCHs that enable object re-
identification across temporally and hence causally separated contexts.  The fifth section, “The human 
solution: Default causal knowledge and resource-limited isotropy” shows that humans employ all of the 
information that is architecturally available to solve the frame problem in the FCH construction 
required to imagine possible outcomes.  The paper concludes by suggesting that it is the fundamentally 
analogical character of pre-motor problem solving that renders the human solution of the frame 
problem adequate in practical contexts. 

The frame problem and the problem of object re-identification

Suppose you must fly from the U.S. to Europe for a week-long meeting.  After a harried morning at 
work, you have a quick lunch with your spouse and get on the plane.  You arrive in Frankfurt, rumpled 
and jittery, the next morning.  Just outside Immigration, you spot someone walking toward you whose 
features appear to perfectly match those of your spouse.  You are filled immediately (within 400 ms; 
Eichenbaum, Yonelinas & Ranganath, 2007) with a feeling of familiarity.  You are now faced with an 
instance of the frame problem, and your first thought, “Wow, that person looks just like my 
wife/husband” or “How did she/he get here?” indicates how you solved it.  Your solution has systemic 
consequences.  If you identified the person as your spouse, you are likely to experience confused 
delight when they rush to give you a hug; if you did not, you are likely to experience something akin to 
terror.

The frame problem is traditionally presented as the problem of circumscribing the set of objects for 
which properties need to be updated following an action.  In the example above, one must decide 
whether the location of one's spouse needs to be updated following a flight to Europe.  This traditional 
presentation rests on an implicit assumption: the assumption that objects can be unproblematically 
identified as the same or different between the pre-action and post-action contexts.  If object 
identification is unproblematic, the frame problem is a problem about properties and the conditions 
under which they can be expected to change.  As the example shows, however, this assumption of 
unproblematic object identification can fail: what can be uncertain – radically so – is whether an object 
with familiar properties that is encountered after an action is the same thing that had those properties 
before the action.  If the assumption of unproblematic object identification is rejected, the frame 
problem becomes far more serious, as it now includes the problem of circumscribing the set of objects 
that must be explicitly re-identified as the same individual thing in the new context that follows an 
action.  To update a famous example of Fodor's (from Pylyshyn, 1987), it becomes the problem of 
determining what components of the previous universe, if any, you are likely to encounter after you've 
turned off your fridge. 

The implicit human assumptions that objects persist through time and can be unproblematically re-
identified as the very same individual from one experienced context to the next is so basic as to be 
considered innate (Baillargeon, 2008); re-identifying objects is commonly treated a “primitive and 
nonconceptual” (Pylyshyn, 2009; p. 13) function that the early visual system is “‘wired’ to do” (p. 32). 
Most AI programs that deal with external objects are “wired” to regard those objects as persistent and 
re-identifiable through the use of fixed designators – effectively, proper names – that are regarded, 
within the chosen programming language, as having fixed semantics; the ubiquitous use of bar code 
labels or other easily-inspected unique-by-design features to encode fixed, unique designators 
exemplifies this semantic practice.  If two such “rigid” designators are associated with the same 
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identification criterion – for example, the same bar code – they are fully interchangeable as required by 
Leibniz's Law.  With these semantic assumptions, the problem of deciding which of two identically-
featured objects one has interacted with previously cannot even be coherently formulated: objects that 
satisfy the implemented semantic criteria are re-identified, while objects that do not satisfy them are 
not.  In the case of humans, however, the semantic relationship between any given bit of neural 
“wiring” and the external world is not obvious, and may not even be discoverable through non-
destructive testing of internal components.  The human implementation of object re-identification must, 
therefore, be investigated at the level of overt behavior, including object-directed actions and verbal 
reports.  Such experimental investigation of human object re-identification criteria has been on-going at 
least since the work of Heraclitus (c. 500 BCE); what has been learned is that human object re-
identification is a complex, resource-intensive cognitive process.  

How humans visually re-identify objects: Phenomenology

The modern era of object re-identification studies began with the work of Burke (1952), who showed 
that whether an object that briefly disappears from sight while passing through a tunnel is re-identified 
as “the same thing” after emerging depends on how long it spends in the tunnel.  Ever more 
sophisticated experiments over the subsequent decades have established a number of robustly-
supported conclusions regarding human within-scene visual object re-identification (reviewed by 
Treisman, 2006; Flombaum, Scholl & Santos, 2008; Gerhardstein et al., 2009; Fields, 2011a).  First, 
whether a briefly occluded object is re-identified as the same thing following the occlusion depends on 
the details of its speed and trajectory: some curvilinear trajectories at constant or variable speed 
indicate sameness, while others do not.  Second, the number and kinds of trajectories that indicate 
sameness change from early infancy until about two years of age, after which they remain essentially 
fixed.  Third and most significantly, the determination of object sameness is independent of changes in 
the object's static, motion-independent features – its size (as long as it remains finite), color, shape, etc. 
Trajectory information dominates static feature information in the “object file” (Treisman, 2006), the 
short-term memory (STM) resident representation on which downstream categorization and 
identification processes act.  Using “objects” that were simply moving regions of random-dot displays, 
Gao and Scholl (2010) have shown that static features are in fact unnecessary for within-scene object 
re-identification; object files are constructed and correctly processed even for objects that cannot be 
distinguished from their backgrounds when not moving.

The frame problem is of minimal relevance during the brief periods of passive observation 
characterized by the experiments briefly reviewed above.  It becomes relevant, however, as soon as 
object-focused actions and even few-second gaps in observation are introduced.  In real-world tasks 
such as freeway driving, where the trajectories of surrounding objects cannot all be monitored 
simultaneously, quickly-distinguishable static features such as size and color become all-important in 
tracking object identities (Hollingworth and Franconeri, 2009).  The successful driver's frame-problem 
solution never introduces the possibility that a lane change, for example, alters the color of a nearby 
car; visual detection of a car with an unexpected color is always treated as indicating the presence of a 
novel object that requires attention and possibly compensatory action.  The relevance of features to 
object re-identification in temporally-extended interaction contexts such as driving indicate that a 
richer, more persistent representation than the object file is being acted upon.  This more persistent 
representation has been labeled the “object token” by Zimmer and Ecker (2010).  From a 
phenomenological perspective, object tokens differ from object files by incorporating category 
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information that stabilizes features by organizing and naming them.  Object tokens represent not 
moving blobs of color, but multiply-featured objects categorized as cars.  Categorization reverses the 
priorities of motion and feature information from those in the object file; in object tokens, static 
features dominate motion.  Unlike object files, object tokens may be maintained in long-term memory 
(LTM).  The dominance of static features in the object token is what enables the same object to be 
identified in different contexts, whether it is moving or still.

Episodic memories group multiple object tokens together in contexts that capture the structure and 
setting of remembered events (reviewed by Eichenbaum, Yonelinas & Ranganath, 2007; Yonelinas et  
al., 2010; Zimmer & Ecker, 2010).  Reactivation of an object token from LTM reactivates context 
information from the episodic memories with which the object token is associated, as well as other 
object tokens from those episodic memories.  In many cases this reactivation is fast enough to seem 
instantaneous, lagging the feeling of familiarity by only about 100 ms.  In other cases, however, object 
token reactivation takes seconds to minutes, and may require the acquisition of additional information 
that triggers the retrieval of a relevant episodic memory (Eichenbaum, Yonelinas & Ranganath, 2007).

Human beings interact with the same objects over and over again throughout significant periods of 
their lifespans; consider, for example, interactions with one's parents, spouse, children, house and car. 
The presence of object tokens referring to the same individual object in multiple episodic memories 
immediately raises the question of updating.  Object tokens are constructed from object files by adding 
categorical information: they capture the current features and motion of an observed object.  These 
current features are stored in episodic memories; otherwise one would not be able to recall incidental 
features such as what someone was wearing or how they behaved on a given occasion.  Incidental 
features must be represented in a way that does not allow them to block re-identification of an object 
when it is encountered in a different context; it is the inability to block re-identification that renders 
such features incidental.  Humans appear to resolve this representational issue by linking object tokens 
representing a given individual to a “singular category” containing only features that do block re-
identification if not matched and are, therefore, effectively essential (Rips, Blok & Newman, 2006; 
Bullot & Rysiew, 2007; Xu, 2007; Bullot, 2009; Nichols & Bruno, 2010).  Even the “essential” features 
contained in singular categories must, however, occasionally be updated; a mis-matched apparent age 
can block re-identification of a child, for example, but apparent age must be periodically updated or it 
will block re-identification permanently and hence incorrectly.  Over extended time, therefore, singular 
categories must be represented as adjustable “models” of an individual that capture historically- as well 
as currently-essential features. 

No stringency of feature-based recognition, division between incidental and essential features, or 
feature-updating scheme is, however, able fully to account for human object re-identification 
capabilities.  When faced with significant feature change or indistinguishably-featured competitors, 
humans also employ causal constraints to determine whether a currently-perceived object is the 
temporal continuation of a previously-encountered object (reviewed by Rips, Blok & Newman, 2006; 
Scholl, 2007). Studies using change-blindness paradigms (reviewed by Simons & Ambinder, 2005) 
show that causal constraints on individual identity are strong enough to sometimes over-ride continuity 
of even ordinarily-essential features.  Simons and Levin (1998), for example, conducted experiments in 
which approximately half of the subjects tested did not detect a change in conversation partner during 
the course of a brief interaction in broad daylight, even though the two conversation partners had 
different facial features and significantly different attire.  Causal constraints also affect episodic 
memory recall, as demonstrated by false-memory studies (reviewed by Mitchell & Johnson, 2000; 
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Henkel & Carbuto, 2008).  Mendelsohn et al. (2009), for example, demonstrate increasing replacement 
over time of autobiographical memories by causally-plausible confabulations in a healthy, fully-
functional individual.  The history that is “filled in” in cases of change blindness or memory 
confabulation has clearly not been observed; it is fictive history generated to plausibly connect the 
observed present to the past of episodic memories (Fields, 2012a).

It is commonplace to think of both property updating and reasoning from causal constraints as 
implemented by heuristics that are either part of general world knowledge (Fodor, 2000; 2008) or 
embedded in domain-specific modules (Pinker, 1997) or mental models (Gentner, 2002).  The lineage 
of AI programs from GPS (Newell & Simon, 1963) to CYC (Lenat & Guha, 1990) exemplifies the 
former way of thinking, while the lineage from expert systems (Hayes-Roth, Waterman & Lenat, 1983) 
to model-based planners (Kolodner, 1992) exemplifies the second.  Alternative AI system architectures 
offer both a choice of heuristics to implement and a choice of data structures and operations with which 
to implement them; as noted previously, they also provide the built-in, typically Leibniz's Law 
compliant semantics of the chosen programming language.  In the case of human problem solvers, both 
the heuristics that are employed and the data structures and operations that implement them must be 
discovered by experimentation, and no semantics beyond that implicit in the verbal or behavioral 
reports of the experimental subjects is given in advance.  Despite these limitations, functional imaging 
studies as well as investigations of the consequences of lesions and other insults have now provided 
sufficient data to construct reasonably detailed neurofunctional models of both categorization and the 
deployment of causal constraints in human object re-identification. 

How humans visually re-identify objects: Implementation

The characterized components of the human visual object tracking, categorization and identification 
system are summarized in Fig. 1.  Visual input is processed by two mutually-modulatory pathways, the 
“ventral stream” through visual area V4 that processes feature information such as shape and color, and 
the “dorsal stream” through the medial temporal area (MT) that processes trajectory information 
(reviewed by Rizzolatti & Matelli, 2003; Nassi & Callaway, 2009).  The ventral stream provides visual 
input to categorized object representations in lateral (LFG) and medial (MFG) fusiform gyrus for 
objects categorized as agents and non-agents, respectively (reviewed by Martin, 2007; Mahon & 
Caramazza, 2009).  Categorization information flows “downward” from the anterior temporal pole 
(ATP), which appears to function in the integration of multi-modal semantic information (reviewed by 
Visser, Jefferies & Lambon Ralph, 2009; Kiefer & Pulvermüller, 2012), via the perirhinal cortex 
(PRC), which implements the categorized object token (Zimmer & Ecker, 2010).  This feature-oriented 
processing stream provides “what” information for the encoding of episodic memories by the 
hippocampus (HC; reviewed by Ranganath, 2010).

*****
Fig. 1 about here.
*****

The dorsal, trajectory-oriented processing stream provides input to representations of the motions of 
categorized agents and non-agents in superior temporal sulcus (STS) and medial temporal gyrus 
(MTG) respectively (Martin, 2007; Mahon & Caramazza, 2009), as well as input to posterior-parietal 
areas involved in the control of actions (Rizzolatti & Matelli, 2003; Nassi & Callaway, 2009; see also 
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below).  These motion-based representations provide “where” information to HC via the 
parahippocampal cortex (PHC), which organizes the spatial layout or context of ongoing events 
(Eichenbaum, Yonelinas & Ranganath, 2007; Ranganath, 2010).  Experiments that probe the criteria for 
within-scene object persistence at the object file level appear to be accessing transitory trajectory 
representations across this MT-to-PHC network (Fields, 2011a).

The representations in both PHC and PRC are reinstated when episodic memories are recalled; these 
reinstated representations compete with and modulate current, perceptually-driven representations 
(Eichenbaum, Yonelinas & Ranganath, 2007; Zimmer & Ecker, 2010; Ranganath, 2010).  As discussed 
above, however, the pathways shown in Fig. 1 do not encode sufficient information to re-identify 
currently-perceived objects as being the same individuals as recalled participants in remembered 
episodes.  At best, they can recognize whether a current object is featurally-indistinguishable from a 
remembered object, and whether the current context is spatially-indistinguishable from a remembered 
context.  If object features change significantly between contexts or a familiar object is encountered in 
an unfamiliar context, object re-identification can fail.  Because the network shown in Fig. 1 encodes 
no model of either featural or contextual change, it does not implement a solution to the frame problem 
as it applies to object re-identification.

The human encoding of on-going events does not, however, involve only “what” and “where” 
information; it also involves tracking “how” and “why” objects came to be where they are in the 
context of active goals.  This “event file” (Hommel, 2004) level of representation combines 
information from multiple sensory modalities, binds goals and actions to objects (Hommel, 2007; 
Spapé & Hommel, 2010), includes multiple levels of categorical abstraction (Colzato, Raffone & 
Hommel, 2006), and incorporates emotional responses to objects and events (Colzato, van Wouwe & 
Hommel, 2007).  Goals, actions, objects, categories and emotions are represented in different areas of 
the brain; event files are, therefore, long-range patterns of correlated neuronal activity.  Unimodal, e.g. 
visual event files are bound in 240 to 280 ms (Zmigrod & Hommel, 2010), the same time-frame 
required for object categorization.  Scenes containing localized, categorized objects are accessible to 
consciousness after approximately 270 ms (Sergent, Baillet & Dehaene, 2005), suggesting that the 
event-file level of correlated neuronal activity corresponds to the “global workspace” that has been 
proposed as the basic substrate of conscious awareness and attentional control (Baars, 1997; Dehaene 
& Naccache, 2001; Dehaene & Changeaux, 2004).  Episodic memory retrieval consistently reactivates 
not just the medial temporal lobe comprising HC, PRC and PHC but also the extended fronto-parietal 
attention control system (Wagner, 2005; Cabeza et al., 2008; Uncapher & Wagner, 2009; Ranganath, 
2010), consistent with the incorporation of motivating goals and “how” and “why” information about 
object positions into experienced episodic memories, and hence with the reactivation of entire event 
files and the theoretical identification of the event-file level of representation with the global 
workspace. 

By identifying the selection of relevant information as an architecturally-supported function of the 
global workspace, Shanahan and Baars (2005) provide a neurofunctionally-supported resolution of one 
aspect of the frame problem: the apparent isotropy of belief updating.  Evidence increasingly supports 
the view that attention is feedback amplification of those patterns of network activity that incorporate 
current goal representations (reviewed by Chun, Golomb & Turk-Browne, 2011; Smallwood et al., 
2012).  In any given problem-solving context, the representations that will be treated as “relevant” are 
those that most overlap with current goals.  Which representations most overlap with current goals is 
determined largely by experience as represented in episodic memories; to the extent that these 
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memories are missing information needed for solving the current problem, or that by absorbing the 
available attentional amplification they suppress retrieval of in-fact relevant information, problem 
solving will fail.  The correlation between significant insights and relaxed attention noted by 
investigators from Archimedes onward, and confirmed by functional imaging studies (Kounios et al., 
2006; 2007; Kounios & Beeman, 2009), reflects the tendency of attention to amplify information that 
has been considered relevant in the past at the expense of information that is actually relevant in the 
present.  Allocating attention to memories previously associated with similar goals is, therefore, not an 
optimal mechanism for isotropy.  It is, however, perhaps the only approximately rational mechanism 
available to organisms with small working memories and highly-constrained computational resources.

Resolution of the issue of isotropy by the mechanism of goal-driven attentional amplification does not, 
however, explain the human ability to re-identify objects as individuals.  As noted above, this ability 
depends on the deployment of category-specific causal constraints that specify “how” and “why” 
objects move between contexts, and “how” and “why” their features can change as they do so. 
Humans incorporate two representations of “how” contextual and featural changes occur, both 
implemented by posterior-parietal components of the “mirror neuron system” that respond to 
observations of actions or motions carried out by others by activating pre-motor representations of such 
actions or motions as they would be carried out by the observer (reviewed by Rizzolatti & Craighero, 
2004; Cattaneo & Rizzolatti, 2009; see Gazzola & Keysers, 2009 for high-resolution data).  The 
responses of mirror-system components are re-configurable by experience (Catmur, Walsh & Heyes, 
2007; Catmur et al., 2008; Heyes, 2010), permitting non-agent motions to be re-represented as agent 
(i.e. self) motions (Schubotz & von Cramon, 2004; Engel et al., 2007).  As shown in Fig. 2, actions of 
identified autonomous agents are represented primarily within the inferior parietal lobule (IPL), 
including the agency-attribution system of the temporal-parietal junction (TPJ), with a bias in agent 
representation to the right hemisphere (Cattaneo & Rizzolatti, 2009).  Movements of non-agents that 
are caused by agents and movements of self-propelled non-agents are represented primarily by mirror-
system components of superior parietal lobule (SPL), with a bias toward the left hemisphere (Martin, 
2007; Mahon & Caramazza, 2009).  These representations are tightly coupled to goal-driven attentional 
reorienting systems (reviewed by Corbetta, Patel & Shulman, 2008).

*****
Fig. 2 about here.
*****

The primary human representation of “why” featural and contextual changes occur is that encoded by 
IPL: changes occur because agents act intentionally.  This bias toward agency is well-documented both 
experimentally (reviewed by Scholl & Tremoulet, 2000) and culturally (reviewed by Bloom, 2007; 
Boyer & Bergstrom, 2008; Rosset, 2008).  An event that results in strong activation of SPL but only 
weak activation of IPL is experienced as not caused by any agent; the lack of “why” information for 
such an event signals an event categorization conflict to the anterior cingulate.  Conflict signals from 
anterior cingulate trigger goal revisions in prefrontal cortex (reviewed by Carter & van Veen, 2007; 
Rolls & Grabenhorst, 2008); revised goals drive attentional re-orientation, the retrieval of alternative 
episodic memories and the construction of alternative FCHs.  Individuals who experience events as not 
caused by agents and are motivated by the resulting conflict to search for “hidden” causes are termed 
“systemizers” (Baron-Cohen, 2002; 2008) or “mechanizers” (Crespi & Badcock, 2008); natural 
scientists, technologists, engineers and mathematicians tend to be systemizers.  The construction by 
systemizers of “why” information for events not caused by agents appears to involve the simultaneous 
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activation of pre-motor representations of force-delivering actions (Fields, 2012b) and suppression of 
self-as-agent representations (Fields, 2011b).  Children typically develop an ability to construct such 
representations around age four (Sobel et al., 2007), well after they develop the ability to attribute 
intentions to agents (Saxe, Carey & Kanwisher, 2004), the tendency to interpret the behavior of 
inanimate objects as intentional (Boyer, Pan & Bertenthal, 2011; Cicchino, Aslin & Rakison, 2011), 
and the tendency to regard inanimate objects as products of intentional design and construction 
(Kelemen, 2004).

Identifying a perceived object as the causal continuer of a remembered object requires generating 
“how” information connecting the remembered object and context to the current object and context. 
Because it is generated by the mirror neuron system, this information is represented by a pre-motor 
plan for a bodily motion that is both observable and executable.  Pre-motor plans specify applied forces 
that supply both intentional and mechanical “why” information; as noted above, the representation of 
purely mechanical “why” information requires the suppression of the intentional component of the pre-
motor plan.  If viewed formally, the inferences that generate these pre-motor plans are structure 
mappings (Gentner, 1983) that preserve force-motion relations (Fields, 2011c, 2012b); when executed 
simultaneously at multiple levels of abstraction, such pre-motor inferences appear to be capable of 
supporting general action planning (Schubotz, 2007; Bubic, von Cramon & Schubotz, 2010).  The 
“how” and “why” information specified by such a pre-motor plan implicitly locates a re-identified 
object in space during the period of non-observation between the remembered context and the present; 
it also attributes particular causes to each of the object's movements and feature changes.  Such plans 
are, therefore, complete – even if often quite abstract – fictive causal histories (FCHs) of the objects 
that they re-identify.  As object re-identification in most instances occurs within the few hundred ms 
required for consciousness at the event-file level of representation – think of re-identifying your spouse 
or your car – the FCH linking a retrieved episodic memory to the current event file must be generated 
within this timeframe; the effects of prefrontal goal representations and even emotions on this process 
are, therefore, top-down without being consciously “deliberative”.  Even in cases in which re-
identification is significantly delayed, people tend to realize suddenly that a perceived object is the 
same thing as one previously encountered, as opposed to consciously inferring it from deliberatively-
considered evidence (Eichenbaum, Yonelinas & Ranganath, 2007), indicating that FCH construction is 
fast and automatic even when it is delayed. 

The FCHs that humans construct in the course of re-identifying objects are based only on the data that 
are available: the currently-perceived situation, the retrieved episodic memory, and the singular and 
general categorical constraints associated with its component object tokens.  Such data clearly under-
determine actual history; FCHs are, therefore, by their construction rough approximations at best of 
reality.  Nothing guarantees even approximate accuracy.  The resolution of FCH construction is, 
moreover, limited by the motion representations available to SPL.  “Someone put it there” may be as 
much detail as can be generated, but may nonetheless be sufficient to re-identify – accurately or 
otherwise – your missing umbrella.  The rapidity of FCH construction and their lack of causal detail are 
consistent with the commonplace experience of “not knowing how something got there” even though it 
has been re-identified as the causal continuation of a familiar object.

The role of parietal cortex in generating the “how” and “why” information needed for object re-
identification that is sketched here suggests an answer to one of the most puzzling questions concerning 
object persistence: the question of how human beings perceive themselves as persistent through time, 
and hence perceive their episodic memories as their memories.  Posterior parietal systems, particularly 
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TPJ, are key components of the “default system” that maintains the sense of self (reviewed by Buckner, 
Andrews-Hanna & Schacter, 2007).  The experienced consequences of parietal lesions indicate that 
pre-motor processes are involved in the experience of agency and hence of of self (reviewed by de 
Jong, 2011).  It is at least plausible, therefore, that the activity of constructing FCHs that re-identify 
perceived objects is experienced, at least in part, also as a re-identification of the self as a persistent 
experiencer.

The human solution: Default causal knowledge and resource-limited isotropy

Together with the limitations on attentional resources imposed by the global workspace architecture, 
the construction of FCHs linking re-identified individual objects to retrieved episodic memories 
provides a general heuristic solution to the frame problem.  This solution divides the objects in any 
perceived context into three classes: (1) those objects that are categorized by type but not re-identified 
as known individuals; (2) those objects that are re-identified as known individuals, and for which 
neither features nor location within the context have changed since the most recent episodic memory; 
and (3) those objects that are re-identified as known individuals, but for which features, location within 
the context, or both have changed since the most recent episodic memory.  The frame problem clearly 
does not arise for objects in the first class: if they are not causal continuations of objects present to 
observation with sufficient salience to be recorded as episodic-memory components at some time prior 
to taking an action, their individual properties are not available for updating in consequence of that 
action.  The presence of such objects in a post-action context is irrelevant if they are not salient, and 
surprising if they are.  The frame problem also does apply to objects in the second class; these are the 
“sleeping dogs” (McDermott, 1987) for which a default FCH of “nothing happened” is assumed to be 
accurate.  It is for objects in the third class that the frame problem poses a significant issue: these are 
the objects for which the FCH constructed to re-identify them has significant causal content.  For 
objects in this third class, the constructed FCH accounts for the featural and contextual changes from 
the remembered to the current context that are evident to observation: such an accounting is precisely 
what is required for object re-identification by FCH construction.

Predicting the consequences of a deliberately planned action requires determining which objects in the 
current, pre-action context will be “sleeping dogs” for which no updating is required.  Doing this 
requires imagining the action's outcome using some set of sensory modalities, in most cases a 
combination of vision and spoken language.  Available data indicate that imaginations are event files 
constructed top-down; up to differences in modulation by the prefrontal “reality monitoring” system 
(Simons et al., 2008), they activate the same post-detection modal-network components that are 
activated when event files are constructed bottom-up by perceptual processes (reviewed by King, 2006; 
Kosslyn, Thompson & Ganis, 2006; Moulton & Kosslyn, 2009; Hubbard, 2010).  When a possible 
outcome of an action is imagined, the question of which objects are sleeping dogs is resolved by the 
process of constructing the corresponding event file: the sleeping dogs are the objects connected to the 
pre-action context by trivial FCHs.  The objects that are not sleeping dogs are mapped into the 
imagined outcome by non-trivial FCHs that specify, by explicit construction, how the action or its 
predictable side-effects moved or changed them.  The range of scenarios that can be imagined as 
outcomes of a given object-directed action in a given context is, therefore, limited by the same 
categorical constraints and action/motion representations that limit FCH construction; hence the range 
of outcomes that can be imagined is no larger than the range of actual situations in which all of the 
participating objects would be re-identifiable as persistent individuals.  Solutions to the object re-
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identification problem thus bound solutions to the frame problem as a whole.  In the case of human 
problem solvers, therefore, the problem of object re-identification is not merely an instance of the 
frame problem: for humans, the problem of object re-identification is the frame problem.

Viewing the frame problem as equivalent, for humans, to the problem of object re-identification allows 
the limitations expected in the human solution of the frame problem, which have in general not been 
investigated experimentally, to be read off from limitations in the human solution to the object re-
identification problem that have been investigated in considerable detail.  As discussed above, humans 
are highly biased in their allocation of attention and are susceptible to change blindness under easily-
manipulable conditions.  Human episodic memories are strongly coupled to emotional responses and 
are susceptible to emotional manipulation as well as to cross-talk between similar contexts containing 
different objects.  One can expect, therefore, that human beings will make systematic updating errors 
following actions in cases involving overly-narrow attentional focus, overly-optimistic assumptions of 
situational familiarity, emotional stress, and contextual ambiguity.  All of these are situations in which 
the problems caused by unintended side-effects, i.e. incorrect frame-problem solutions, are all too 
familiar.  The quality of frame-problem solutions can, moreover, be expected to be highly dependent on 
expertise.  Accurate categorical constraints on the behavior of objects – inanimate or animate – together 
with highly-developed pre-motor simulation capabilities can be expected to yield better frame problem 
solutions; deficits in either of these areas can be expected to yield errors.  Reliance on purely agent-
driven causal models, in particular, will produce inaccurate frame problem solutions whenever the 
intentions assigned to the “agent” either under- or over-constrain the behavior of objects relative to the 
actual causal processes operating in the situation.

Conclusion

The frame problem has traditionally been considered independently of the object re-identification 
problem, which with typical assumptions about programming-language semantics does not arise.  What 
has been shown here is that, if the model of object re-identification by FCH construction is correct, the 
frame problem and the problem of object re-identification are equivalent for the human cognitive 
architecture.  If this model is correct, the human solution of the frame problem is clearly “embodied” 
(Gallese & Lakoff, 2005; Barsalou, 2008; Kiefer & Pulvermüller, 2012): it involves causal inferences 
implemented by the pre-motor system.  It is, however, equally clearly algorithmic: the data available 
for processing are highly constrained, and the procedures that process them are architecturally fixed.

Viewed through the abstracting lens of symbolic data structures, the human solution to the frame 
problem is a spaghetti-code kluge of barely-informative heuristics, case-based reasoning and theoretical 
modeling, all overlaid with an experience-dependent hodge-podge of emotional and attentional biases. 
What saves this system from functional irrelevance is that human episodic memory retrieval is 
controlled not only by the similarity machine implemented by temporal-lobe categorization, but also by 
the analogy machine of the parietal-lobe pre-motor action-planning system, which computes structure 
mappings between alternative causal histories (Schubotz, 2007; Bubic, von Cramon & Schubotz, 2010; 
Fields, 2011c; 2012b).  The frame problem was originally motivated by a view of problem solving as 
fundamentally deductive, but it has long been clear that workable solutions are abductive.  In the case 
of human beings, we can now claim a moderately good understanding of how this abductive process 
works.
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Figure captions

Fig. 1:  Human implementation of object tracking, object categorization, and episodic memory of 
“what” and “where” information.  Solid arrows show “bottom-up” perceptual processing and dashed 
arrows shown “top-down” categorization; the double arrow between ATP and HC indicates off-line 
category refinement.  Lateral connections are suppressed for simplicity of presentation.  Abbreviations 
for anatomic areas are as defined in the text.

Fig. 2:  Human implementation of agency attribution, actions by agents, and motions of self-propelled 
non-agents.  Solid arrows show pathways leading to episodic memory encoding by HC; double arrows 
indicate off-line category refinement (ATP – HC) and long-range connections within the fronto-parietal 
attention-control network.  Feedback and lateral connections as well as hemispheric differences are 
suppressed for simplicity of presentation.  Abbreviations for anatomic areas are as defined in the text.
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