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Abstract7

Living systems face both environmental complexity and limited access to free-energy re-8

sources. Survival under these conditions requires a control system that can activate, or9

deploy, available perception and action resources in a context specific way. In this Part I,10

we introduce the free-energy principle (FEP) and the idea of active inference as Bayesian11

prediction-error minimization, and show how the control problem arises in active inference12

systems. We then review classical and quantum formulations of the FEP, with the former13

being the classical limit of the latter. In the accompanying Part II, we show that when14

systems are described as executing active inference driven by the FEP, their control flow15

systems can always be represented as tensor networks (TNs). We show how TNs as control16

systems can be implemented within the general framework of quantum topological neural17

networks, and discuss the implications of these results for modeling biological systems at18

multiple scales.19

20

Keywords21
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24

1 Introduction25

Living things offer remarkable examples of complex, multi-level control policies that guide26

adaptive function at several scales. At the same time, they are made of components which27
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are usually thought of as physical objects obeying simple rules; how can these two per-28

spectives be unified in a rigorous manner? The framework of active inference answers this29

question, by providing a completely general, scale-free formal framework for describing in-30

teractions between physical systems in cognitive terms. It is based on the Free Energy31

Principle (FEP), first introduced in neuroscience [1, 2, 3, 4, 5] before being extended to32

living systems in general [6, 7, 8, 9] and then to all self-organizing systems [10, 11, 12, 13].33

The FEP states that any system that interacts with its environment weakly enough to34

maintain its identifiability over time 1) has a Markov blanket (MB) that separates its inter-35

nal states from the states of its environment [14, 15, 16, 17, 18] and 2) behaves over time in36

a way that asymptotically minimizes a variational free energy (VFE) measured at its MB.37

Equivalently, the FEP states that any system with a non-equilibrium steady-state (NESS)38

solution to its density dynamics (and hence an MB) will act so as to maintain its state in39

the vicinity of its NESS. Any system compliant with the FEP can be described as engaging,40

at all times, in active inference: a cyclic process in which the system observes its environ-41

ment, updates its probabilistic “Bayesian beliefs” (i.e., posterior or conditional probability42

densities) over future behaviors, and acts on its environment so as to test its predictions43

and gain additional information. The internal dynamics of such a system can be described44

as inverting a generative model (GM) of its environment that furnishes predictions of the45

consequences of its actions on its MB.46

As a fully-general principle, the FEP applies to all physical systems, not just to behav-47

iorally interesting, plausibly cognitive systems, such as organisms or autonomous robots48

[10]. Intuitively, behavior is interesting – to external observers and, we can assume, to49

the behaving system itself – when it is complex, situation-appropriate, and robust in the50

face of changing environmental conditions. Friston et al. [13] characterize interesting sys-51

tems as “strange particles”, whose internal (i.e., cognitive) states are influenced by their52

actions only via perceived environmental responses; such systems have to “ask questions”53
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of their environments in order to get answers [19]. Such systems, even bacteria and other54

basal organisms [20, 21, 22, 23], have multiple ways of observing and acting upon their55

environments and deploy these resources in context-sensitive ways. In operations-research56

language, they exhibit situational awareness, i.e., awareness of the context of actions [24],57

and deploy attention systems to manage the informational, thermodynamic, and metabolic58

costs of maintaining such awareness [12, 22]. Situational awareness is dependent on both59

short- and long-term memory, or more technically, on the period of time over which precise60

[Bayesian] beliefs exist, sometimes referred to as the temporal depth or horizon of the GM61

[20, 21]. Upper limits can, therefore, be placed on behavioral complexity by examining62

the capacity and control of memory systems from the cellular scale [25] upwards. Liv-63

ing systems from microbial mats to human societies employ stigmergic memories [22] and64

hence have “extended minds” [26] in the sense of the literature on embodied, embedded,65

enactive, extended, and affective (4EA) cognition [27, 28]. Such memories must be both66

readable and writable; hence any system using them must have dedicated, memory-specific67

perception–action capabilities.68

Any system with multiple perception–action (or stimulus–response) capabilities requires a69

control system that enables context-guided perception and action and precluding the con-70

tinuous, simultaneous deployment of all available perception–action capabilities. Such self71

organization entails the selection of a particular course of action – i.e., policy – from all72

plausible policies entertained by the system’s GM. In the active inference framework, the73

system’s internal states – hence its GM – can be read as encoding posterior probability74

densities (i.e., Bayesian beliefs) over the causes of its sensory states, including, crucially, its75

own actions. This leads to the notion of planning and control as inference [29, 30, 31], with76

the ensuing selection of an action given by the most likely policy. In bacteria such as E.77

coli, for example, mutual inhibition between gene regulatory networks (GRNs) for different78

metabolic operons permit the expression of specific carbon-source (e.g., sugar) metabolism79
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pathways only when the target carbon source is detected in the environment [32]. The con-80

trol of foraging behavior via chemotaxis employs a similar, in this case bistable, mechanism81

[33]. Such mechanisms are active in multicellular morphogenesis, for example, in the head-82

versus-tail morphology decision in planaria [34]. In the human brain, mutual inhibition83

between competing visual processing streams is evident in binocular rivalry (switching be-84

tween distinct scenes presented to left and right eyes) or in the changing interpretations of85

ambiguous figures such as the Necker cube [35, 36]; similar competitive effects are observed86

in other sensory pathways [37]. It also characterizes the competitive interaction between the87

dorsal and ventral attention systems, which implement top-down and bottom-up targeting88

of sensory resources, respectively [38]. It is invoked at a still larger scale in global workspace89

models of conscious processing, in which incoming information streams must compete, with90

each inhibiting the others, for “access to consciousness” [39, 40]. Mutual inhibition cre-91

ates an energetic barrier that the control system that implements switching must expend92

free-energy resources to overcome; the controller must not only turn “on” the preferred93

system, but also turn “off” the inhibition. The required free energy expenditure in turn94

induces hysteresis and hence the non-linear, winner-takes-all “switch” behavior in the time95

regime. Such barriers and their temporal consequences persist in more complex control96

systems whenever two perception–action capabilities are either functionally incompatible97

or too expensive to deploy simultaneously.98

Switching between perception–action capabilities can be regarded, from a theoretical, FEP99

perspective, as selecting a plausible policy, or plan, supported by the GM. Technically, the100

probability distribution over policies or plans can be computed from a free energy functional101

expected under the posterior predictive density over possible outcomes, as described in §2.1102

below. The control system that implements the switching process can be considered to103

employ the GM to predict, or assign a probability distribution to, each perception-action104

capability (i.e., policy) as a function of context [41, 42]. We can consider the GM to105
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generate probabilistic “beliefs” about the consequences of actions, where here a “belief” is106

just a mathematically-described structure, e.g., a classical conditional probability density107

or a quantum state with an assigned amplitude. “Planning” or “control” can, therefore,108

always be cast as inference – again in the basal sense of computation – implemented by109

variational message passing or “belief propagation” on a (normal style) factor graph: a110

graph with nodes corresponding to the factors of a probability distribution and undirected111

edges corresponding to message-passing channels. Factor graphs can be combined with112

message passing schemes, with the messages generally corresponding to sufficient statistics113

of the factors in question, to provide an efficient computation of functions such as marginal114

densities [43, 44]. Hence one can formalize control – under the FEP – in terms of control as115

inference, which implies that there is a description of control in terms of message passing116

on a factor graph. When the GM is over discrete states, this implies a description of control117

in terms of tensor operators.118

Nearly all simulations of planning – under discrete state space GMs – use the factor-119

graph formalism. Crucially, the structure of the factor graph embodies the structure of the120

GM and, effectively, the way that any system represents the (apparent causes of) data on121

its MB; i.e., the way it “carves nature at its joints,” into states, objects and categorical122

features. Under the (classical) FEP, the factors that constitute the nodes of the factor123

graph correspond to the state-space factorization in a mean field approximation, as used124

by physicists, or by statisticians to implement variational Bayesian (a.k.a., approximate125

Bayesian) inference [45]. See [46] for technical details, [47] for an application to the brain,126

and Supplementary Information, Table 1 for a list of selected applications.127

We show in Parts I and II of this paper that control flow in such systems can always be128

formally described as a tensor network, a factorization of some overall tensor (i.e., high-129

dimensional matrix) operator into multiple component tensor operators that are pairwise130

contracted on shared degrees of freedom [48]. In particular, we show that the factorization131
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conditions that allow the construction of a TN are exactly the same as those that allow132

the identification of distinct, mutually conditionally independent (in quantum terms, de-133

coherent), sets of data on the MB, and hence allow the identification of distinct “objects”134

or “features” in the environment. This equivalence allows the topological structures of135

TNs – many of which have been well-characterized in applications of the TN formalism136

to other domains [48] – to be employed as a classification of control structures in active137

inference systems; including cells, organisms, and multi-organism communities. It allows,138

in particular, a principled approach to the question of whether, and to what extent, a139

cognitive system can impose a decompositional or mereological (i.e., part-whole) structure140

on its environment. Such structures naturally invoke a notion of locality, and hence of141

geometry. The geometry of spacetime itself has been described as a particular TN – a142

multiscale entanglement renormalization ansatz (MERA) [49, 50, 51] – suggesting a deep143

link between control flow in systems capable of observing spacetime (i.e., capable of im-144

plementing internal representations of spacetime) and the deep structure of spacetime as a145

physical construct.146

We begin in this Part I, §2 by analyzing the control-flow problem in three different rep-147

resentations of active inference. First, we employ the classical, statistical formulation of148

the FEP [10, 11] in §2.1 to describe control flow as implementing discrete, probabilistic149

transitions between dynamical attractors on a manifold of computational states. We then150

reformulate the physical interaction in quantum information-theoretic terms in §2.2; in this151

formulation [12], components of the GM can be considered to be distinct quantum refer-152

ence frames (QRFs) [52, 53] and represented by hierarchical networks of Barwise-Seligman153

classifiers [54] as developed in [55, 56, 57, 58]. Control flow then implements discrete tran-154

sitions between QRFs. The third step, in §2.3, employs the mapping between hierarchies155

of classifiers and topological quantum field theories (TQFTs) developed in [59]. Here, con-156

trol flow is implemented by a TQFT, with transition amplitudes given by a path integral.157
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The second and third of these representations provide formal characterizations of intrinsic158

(or “quantum”) context effects that are consistent with both the sheaf-theoretic treatment159

of contextuality in [60, 61] and the Contextuality by Default (CbD) approach of [62, 63];160

see also the discussion in [57] and [59, §7.2]. The underlying theme is that contextuality161

arises due to the non-existence of any globally definable (maximally connected) conditional162

probability distribution across all possible observations (see e.g., [64] for a review from a163

more general physics perspective). Extending our earlier analysis [57], we discuss reasons164

to expect that active inference systems will generically exhibit such context effects.165

In Part II, we develop a fully-general tensor representation of control flow, and prove that166

this tensor can be factored into a TN if, and only if, the separability (or conditional sta-167

tistical independence) conditions needed to identify distinct features of, or objects in, the168

environment are met. We show how TN architecture allows classification of control flows,169

and give two illustrative examples. We then discuss several established relationships be-170

tween TNs and artificial neural network (ANN) architectures, and show how these generalize171

to topological quantum neural networks [59, 65], of which standard deep-learning (DL) ar-172

chitectures are a classical limit [66]. Having developed these formal results, we turn to173

implications of these results for biology, and discuss how TN architectures correlate with174

the observational capabilities of the system being modeled, particularly as regards abilities175

to detect spatial locality and mereology. We consider how to classify known control path-176

ways in terms of TN architecture and how to employ the TN representation of control flow177

in experimental design. We conclude by looking forward to how these FEP-based tools can178

further integrate the physical and life sciences.179
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2 Formal description of the control problem180

2.1 The attractor picture181

Let U be a random dynamical system that can be decomposed into subsystems with states182

µ(t), b(t), and η(t) such that the dependence of the µ(t) on the η(t), and vice-versa, is only183

via the b(t). In this case, the b(t) form an MB separating the µ(t) from the η(t). We will refer184

to the µ(t) as “internal” states, to the η(t) as “environment” states, and to the combined185

π(t) = (b(t), µ(t)) as “particular” (or “particle”) states [10]. The FEP is a variational or186

least-action principle stating that any system – that interacts sufficiently weakly with its187

environment – can be considered to be enclosed by an MB, i.e. any “particle” with states188

π(t) = (b(t), µ(t)), will evolve in a way that tends to minimize a variational free energy189

(VFE) F (π) that is an upper bound on (Bayesian) surprisal. This free energy is effectively190

the divergence between the variational density encoded by internal states and the density191

over external states conditioned on the MB states. It can be written [10, Eq. 2.3],192

F (π) = Eq(η)[ln qµ(η)− ln p(η, b)]︸ ︷︷ ︸
Variational free energy

= Eq[− ln p(b|η)− ln p(η)]︸ ︷︷ ︸
Energy constraint (likelihood & prior)

−Eq[− ln qµ(η)]︸ ︷︷ ︸
Entropy

= DKL[qµ(η)|p(η)]︸ ︷︷ ︸
Complexity

−Eq[ln p(b|η)]︸ ︷︷ ︸
Accuracy

= DKL[qµ(η)||p(η|b)]︸ ︷︷ ︸
Divergence

− ln p(b)︸ ︷︷ ︸
Log evidence

≥ − ln p(b)

(1)

The VFE functional F (π) is an upper bound on surprisal (a.k.a. self-information) I(π) =193

− ln p(π) > − ln p(b) because the Kullback-Leibler divergence term (DKL) is always non-194

negative. This KL divergence is between the density over external states η, given the MB195

state b, and a variational density qµ(η) over external states parameterized by the internal196

10



state µ. If we view the internal state µ as encoding a posterior over the external state η,197

minimizing VFE is, effectively, minimizing a prediction error, under a GM encoded by the198

NESS density. In this treatment, the NESS density becomes a probabilistic specification199

of the relationship between external or environmental states and particular (i.e., “self”)200

states. We can interpret the internal and active MB states in terms of active inference,201

i.e., a Bayesian mechanics [11], in which their expected flow can be read as perception202

and action, respectively. Here “active” states are a subset of the MB states that are not203

influenced by environmental states and – for the kinds of particles considered here – do204

not influence internal states. In other words, active inference is a process of Bayesian205

belief updating that incorporates active exploration of the environment. It is one way206

of interpreting a generalized synchrony between two random dynamical systems that are207

coupled via an MB.208

If the “particle” π is a biological cell, it is natural to consider the MB b to be implemented209

by the cell membrane and the “internal” states µ to be the internal macromolecular or210

biochemical states of the cell; indeed, it is this association that motivated the application of211

the FEP to cellular life [5]. In this case, the NESS corresponds to the state, or neighborhood212

of states, that maintain homeostasis (or more broadly, allostasis [67, 68, 69]) and hence213

maintain the structural and functional integrity of π as a living cell. This activity of self-214

maintenance has been termed “self-evidencing” [70]; systems compliant with the FEP can215

be considered to be continually generating evidence of – or for – their continued existence216

[10].217

In the terminology of [13] cells are “strange particles” – their signal transduction pathways218

monitor (components of) the states of their environments, but do not directly monitor their219

actions on their environments (i.e., their own active states). The consequences of any action220

can only, therefore, be deduced from the response of the environment. In this situation,221

causation is always uncertain: whether an action by the environment on the cell – what222
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the cell detects as an environmental state change – is a causal consequence of an action the223

cell has taken in the past cannot be determined by the data available to the cell. Every224

action, therefore, increases VFE, while every observation (potentially) decreases it. The225

(apparent) task of the cell’s GM is to minimize the increases, on average, while maximizing226

the decreases.227

The Bayesian mechanics afforded by the FEP implies a (classical) thermodynamics; indeed,228

the FEP can be read as a constrained maximum entropy or caliber principle [71, 72]. This229

follows from the fact that inference, i.e., self evidencing, entails belief updating and belief230

updating incurs a thermodynamic cost via the Jarzynski equality [73, 74, 75]. This cost231

provides a lower bound on the thermodynamic free energy required for metabolic mainte-232

nance. For example, a cell’s actions on its environment – e.g., chemotactic locomotion – are233

largely driven by the need to acquire thermodynamic free energy. The cell’s GM cannot,234

therefore, minimize VFE by minimizing action [76]; instead, it must successfully predict235

which actions will replenish its free-energy supply. As actions are energetically expensive,236

this requires trading off short-term costs against long-term goals. As shown in [41], selective237

pressures operating on different timescales favor the development of metaprocessors that238

control lower-level actions in a context-dependent way; these are often implemented via a239

hierarchical GM [77]. Such meta-level control provides probabilistic models of risk-sensitive240

actions in context.241

While such systems may be described as regulating free-energy seeking actions, they also242

regulate information-seeking actions, i.e., curiosity-driven exploration [78, 79, 80]. This243

follows because VFE provides an upper bound on complexity minus accuracy [81]. The244

expected free energy (EFE), conditioned upon any action, can therefore be scored in terms245

of expected complexity and expected inaccuracy. Expected complexity is “risk” and cor-246

responds to the degree of belief updating that incurs a thermodynamic cost; leading to247

risk-sensitive control (e.g., phototropism). Expected inaccuracy corresponds to “ambigu-248
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ity” leading to epistemic behaviors (e.g., searching for lost keys under a streetlamp) [42].249

When context-dependent control is considered, the neighborhood of the NESS resolves250

into a network of local minima corresponding to fixed perception-action loops separated251

by energetic barriers that the control system must overcome to switch between loops. For252

example, in a cell, this energetic barrier comprises the energy required to activate one path-253

way while de-activating another, which may include the energetic costs of phosphorylation,254

other chemical modifications, additional gene expression, etc. Different pairs of pathways255

can be expected to be separated by energetic barriers of different heights, generating a256

topographically-complex free energy landscape that coarse-grains, in a long-time average,257

to the neighborhood of the NESS, i.e., to the maintenance of allostasis [68, 69, 82].258

As noted earlier, we can think of controllable perception-action loops as nodes on a factor259

graph, with the edges corresponding to pathways for control flow, and the transition prob-260

abilities labeling the edges as inversely proportional to the energetic barrier between loops.261

This allows representing the GM for meta-level (i.e., hierarchical) control as a message-262

passing system as described in [47]. The presence of very high energetic barriers can render263

such a GM effectively one-way, as seen in the context-dependent switches between signal264

transduction pathways and GRNs that characterize cellular differentiation during morpho-265

genesis. Biological examples of these include modifications of bioelectric pattern memories266

in planaria, which can create alternative-species head shapes that eventually remodel back267

to normal [83], or produce 2-headed worms which are permanent, and regenerate as 2-268

headed in perpetuity [84].269

2.2 The QRF picture270

Cellular information processing has traditionally been treated as completely classical, i.e.,271

as implemented by causal networks of macromolecules, each of which undergoes classical272
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state transitions via local dynamical processes that are conditionally independent of the273

states of other parts of the network. While the “quantum” nature of proteins and other274

macromolecules is broadly acknowledged, the scale at which quantum effects are important275

remains controversial, with straightforward single-molecule decoherence models predicting276

decoherence times of attoseconds (10−18 s) or less [85, 86]: several orders of magnitude277

below the timescales of processes involved in molecular information processing [87]. While278

functional roles for quantum coherence in intramolecular information processing have been279

demonstrated, intermolecular coherence remains experimentally elusive [88, 89, 90, 91].280

The free-energy budgets of both prokaryotic and eukaryotic cells are, however, orders of281

magnitude smaller than would be required to support fully-classical information processing282

at the molecular scale, suggesting that cells employ quantum coherence as a computational283

resource [92]. Indirect evidence of longer-range, tissue-scale coherence in brains has also284

been reported [93]. Reformulating the FEP in quantum information-theoretic terms enables285

it to describe situations in which long-range coherence, and hence quantum computation,286

cannot be neglected.287

Following the development in [12], we consider a bipartite decomposition U = AB of a288

finite, isolated system U for which the interaction Hamiltonian HAB = HU − (HA +HB) is289

sufficiently weak over the time period of interest that the joint state |U〉 is separable (i.e.,290

factors) as |U〉 = |A〉|B〉. In this case, we can choose orthogonal basis vectors |ik〉 so that:291

HAB = βkKB Tk

N∑
i

αkiM
k
i , (2)

where KB denotes Boltzmann’s constant, T is the absolute temperature of the environment,292

k = A or B, the Mk
i are N mutually-orthogonal Hermitian operators with eigenvalues in293

{−1, 1}, the αki ∈ [0, 1] are such that
∑N

i α
k
i = 1, and βk ≥ ln 2 is an inverse measure of k’s294

thermodynamic efficiency that depends on the internal dynamics Hk; see [56, 58, 94, 95] for295
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further motivation and details of this construction and [96] for a pedagogical review. This296

description is purely topological, attributing no geometry to either U or B; hence it allows297

the “embedding space” of perceived “objects” to be an observer-dependent construct. It298

has several relevant consequences:299

� We can regard A and B as separated, and determined by independent measures. They300

are separated by – and interact via – a holographic screen B that can be represented,301

without loss of generality, by an array of N non-interacting qubits, where N is the302

dimension of HAB [94, 95].303

� A and B can be regarded as exchanging finite N -bit strings, each of which encodes304

one eigenvalue of HAB [94].305

� A and B have free choice of basis for HAB, corresponding to free choice of local frames306

at B, e.g., free choice, for each qubit qi on B, of the local z axis and hence the z-spin307

operator sz that acts on qi [96].308

� Choice of basis corresponds to choosing the zero-point of total energy by each of A309

and B. The systems A and B are, therefore, in general at informational, but not at310

thermal equilibrium [12].311

� As A and B must obtain from B or A, respectively, whatever thermodynamic free312

energy is required, by Landauer’s principle [73, 99, 100], to fund the encoding of313

classical bits on B (as well as any other irreversible classical computation), A and B314

must each devote some sector F of B to free-energy acquisition. The bits in F are315

“burned as fuel” and so do not contribute input data to computations. Waste-heat316

dissipation by one system is free energy acquisition by the other. The free-energy317

sectors FA and FB of A and B need not align as subsets of qubits on B; that is,318
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qubits that A regards as free-energy sources may be regarded by B as informative319

outputs and vice-versa [56, 58].320

� The actions of the internal dynamics HA and HB on B can be represented by A-321

and B-specific sets of QRFs, each of which both “measures” and “prepares” qubits322

on B. Each QRF acts on the qubits in some specific sector of B, breaking the323

permutation symmetry of Eq. (2) [56, 58, 59]. Only QRFs acting on sectors other324

than F implement informative computations; we will therefore restrict attention to325

these QRFs.326

� Each “computational” QRF can, without loss of generality, be represented by a cone-327

cocone diagram (CCCD) comprising Barwise-Seligman classifiers and infomorphisms328

between them [54, 55]. The apex of each such CCCD is, by definition, both the329

category-theoretic limit and colimit of the “input/output” classifiers that correspond,330

formally, to the operators Mk
i in Eq. (2) [56, 58, 59].331

Typically, a CCCD is structured as a distributed information flow in the form:332

A1 g12

g21 // A2
oo

g23

g32 // . . . Akoo

C′
h1

hh

h2

OO

hk

55

A1

f1

66

g12

g21 // A2
oo

f2

OO

g23

g32 // . . . Akoo

fk

ii (3)

incorporating sets of classifiers {Aα} and (logic) infomorphisms {fi, gjk} [54, Ch 12] over333

suitable index ranges. As a memory-write system, Diagram (3) depicts a generic blueprint334

for a bow-tie or variational autoencoder (VAE) network amenable to describing a hierar-335

chical Bayesian network with belief-updating as discussed in e.g. [12, 57, 59]. Crucially, it336

is the non-commutativity of CCCDs of this form that specifies intrinsic or quantum con-337
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textuality, as occurs, for instance, when the colimit core C′ is undefinable [57, §7, §8] [59,338

§7.2]. Consequences of such contextuality are discussed via examples in Part II.339

The holographic screen B functions as an MB separating A from B. It can be regarded340

as having an N -dimensional, N -qubit Hilbert space Hqi =
∏

i qi. While Hqi is strictly341

ancillary to HU = HA ⊗HB, the classical situation can be recovered in the limit in which342

the entanglement entropies S(|A〉),S(|B〉)→ 0 by considering the products HA ⊗Hqi and343

HB⊗Hqi to be “particle” state spaces for A and B, respectively. In this classical limit, the344

states of Hqi become the blanket states of an MB that functions as a classical information345

channel [94, 95, 96]. In quantum holographic coding, for example, B is often represented346

by a polygonal tessellation of the hyperbolic disc, with qubits represented by polygonal347

centroids. A specific TN model of a pentagon code is developed in [97]; see in particular348

their Fig. 4. The geometric description of B as implementing holographic coding, and its349

classical limit as an MB structured as a direct acyclic graph (DAG), is further explored in350

the setting of TQNNs in [98].351

In this quantum-theoretic picture, “systems” or “objects” observed and manipulated by352

A or B correspond to sectors on B that are the domains of particular QRFs deployed353

by A or B, respectively [58, 12, 59]. To simplify notation, we use the same symbol, e.g.,354

‘Q’ to denote both a QRF Q and the sector dom(Q) on B. Any identifiable system X355

factors into a “reference” component R that maintains a time-invariant state |R〉 or more356

generally, state density ρR, that allows re-identification and hence sequential measurements357

over extended time, and a “pointer” component P with a time-varying state |P 〉 or density358

ρP . It is this pointer component, named for the pointer of an analog instrument, which359

is the “state of interest” for measurements. The QRFs R and P clearly must commute,360

and the sectors R and P clearly must be mutually decoherent [58, 12, 59]. All “system”361

sectors must be components of some overall sector E that corresponds to the “observable362

environment.” The recording of measurement outcomes to a classical memory and the363
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reading of previously-recorded outcomes from memory can similarly be represented by a364

QRF Y . As dom(Y ) is a sector on B, recorded memories of A are exposed to and hence365

subject to modification by B and vice-versa. Both the observable environment E and the366

memory sector Y must be disjoint from, and decoherent with, the free-energy sector F .367

As actions on B encode classical data, they have an associated free energy cost of at368

least ln2 KBT per bit [73, 99, 100] that must originate from the source at F . Time-369

energy complementary associates a minimum time of h/[ln2(KBT )], with h being Planck’s370

constant, to this energy expenditure. We can, therefore, associate actions on B, including371

memory writes, with “ticks” of an internal time QRF, which we denote tA and tB for A372

and B, respectively. Assuming all observational outcomes are written to memory, we can373

represent the situation as in Fig. 1. The time QRF is effectively an outgoing bit counter374

that can be represented by a groupoid operator Gij : ti → tj [56]. As outgoing bits are375

oriented in opposite directions with respect to B for A and B, the time “arrows” tA and376

tB point in opposite directions. Hence A and B can both be regarded as “interacting with377

their own futures” as discussed in [96].378
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Figure 1: Cartoon illustration of QRFs required to observe and write a readable memory
of an environmental state |E〉. The QRFs E and Y read the state from E and write it to
the memory Y respectively. Any identified system S must be part of E. The clock Gij is a
time QRF that defines the time coordinate tA. The dashed arrow indicates the observer’s
thermodynamic process that converts free energy obtained from the unobserved sector F
of B to waste heat exhausted through F . Adapted from [58], CC-BY license.

Measurements of a system X can be considered sequential if: 1) they are separated in379

time according to the internal time QRF, and 2) their outcomes are recorded to memory380

to enable comparability across time. We show in [59] that sequential measurements can381

always be represented by one of two schemata. Using the compact notation:382

S (4)
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to represent a QRF S, we can represent measurements of a physical situation in which one383

system divides into two, possibly entangled, systems with a diagram of the form:384

S

S1

S2

S (5)

Parametric down-conversion of a photon exemplifies this kind of process. The reverse385

process can be added to yield:386

S

S1

S2

S S (6)

In the second type of sequential measurement process, the pointer-state QRF P is replaced387

with an alternative QRF Q with which it does not commute. Sequences in which position388

and momentum, or spins sz and sx, are measured alternately are examples. These can be389

represented by the diagram:390

S

P

R

S S

Q

R

S (7)

As both P and Q must commute with R, the commutativity requirements for S are satisfied.391

The sequences of operations depicted in Diagrams (6) and (7) clearly raise the questions392

of how control is implemented, and of how the context changes that drive control flow are393
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detected. Before turning to these questions in Part II, we review a path-integral repre-394

sentation of QRFs, show that the same representation also captures the behavior of any395

system X identified by a QRF, and discuss the questions of multiple observers and quantum396

contextuality.397

2.3 The TQFT picture398

As a least-action principle, the FEP is fundamentally a statement about the paths followed399

by the joint system U through its state space. The classical FEP is amenable to a path-400

integral formulation [13] that expresses the expected value of any observable (functional)401

Ω[x(t)] of paths x(t) through the relevant state space as ([101], Eq. 6):402

〈Ω[x(t)]〉 =

∫
dx0

∫
d[x(t)]Ω[x(t)]p(x(t)|x0)p0(x0) (8)

where x0 is the initial state and p(x(t)|x0) is the conditional probability of the path x(t).403

Quantum theory generalizes this expression by, effectively. replacing Ω[x(t)] with an au-404

tomorphism on the relevant Hilbert space and p(x(t)|x0) with an amplitude for x(t) given405

the initial state x0. For some finite-dimensional Hilbert space H, the manifold of all such406

automorphisms is a cobordism on H, which is by definition a TQFT on H [102].407

We show in [59] that any sequential measurement of any sector X of B induces a TQFT on408

X, considered as a projection of the N -dimensional boundary Hilbert space Hqi associated409

with B. In particular, measurement sequences of the form of Diagram (6) can be mapped410

to cobordisms, i.e., to manifolds of maps between two designated boundaries, of the form:411
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B

S

B

S
S1

S2

S

S1

S2

F(i) F(k)

F

(9)

while sequences of the form of Diagram (7) can be mapped to cobordisms of the form:412

B

P

R

B

S
Q

R

P

R

S

Q

R

F(i) F(k)

F

(10)

In either case, F : CCCD→ Cob is the functor from the category CCCD of CCCDs (and413
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hence of QRFs) to the category Cob of finite cobordisms required to define a TQFT. In414

general, we can state:415

Theorem 1 ([59] Thm. 1). For any morphism F of CCCDs in CCCD, there is a cobor-416

dism S such that a diagram of the form of Diagram (9) or (10) commutes.417

referring to [59] for the proof.418

Theorem 1 applies to any sequential measurement; therefore, it applies to measurements419

of a sector X followed by measurements of the associated memory sector Y , or vice versa.420

Assuming for convenience that the dimension dim(X) = dim(Y ), we can consider a com-421

posite operation Q = (
−→
Q,
←−
Q), where

−→
Q = QXQY and

←−
Q = QYQX . This Q is a pair of422

QRF sequences that can be identified with TQFTs that measure and record an outcome,423

mapping HX → HY , and dually use an outcome read from memory to prepare a state,424

mapping HY → HX , respectively, as in Diagram 11:425

B

Q (11)

This composite operator Q is, by Theorem 1, itself a TQFT [98]. Hence the operation of426

recording observational outcomes for a sector X made at t to memory, and then comparing427

them to later observations at t+ ∆t, is formally equivalent to propagating the “system” X428

forward in time from t to t+ ∆t.429

Identifying QRFs as “internal” TQFTs allows a general analysis of information exchange430
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between multiple QRFs deployed by a single system, e.g., A. Because all QRFs act on431

B, information exchange between QRFs requires a channel that traverses B. Any such432

channel is itself a QRF, one deployed by B. Considering A to comprise two observers,433

one deploying Q1 and the other deploying Q2, that interact via a local operations, classical434

communication (LOCC [103]) protocol provides an example:435

BA B
Q1

Q2 Classical channel

Quantum channel

(12)

In a LOCC protocol, one channel is considered “classical” while the other is considered436

“quantum”; however, this language masks the fact that both channels are physical. As437

pointed out in [104], all media supporting classical communication are physical, and inter-438

actions with these media are always local measurements or preparations. Hence the two439

channels in a LOCC protocol are physically equivalent – both are TQFTs implemented by440

B – although their conventional semantics are different.441

Diagram (12) can, clearly, also represent externally-mediated communication between any442

two functional components of a system, e.g., macromolecular pathways within a cell or443

functional networks within a brain. We show in [98] that whenever Q1 and Q2 are deployed444

by distinct – technically, separable or mutually decoherent – “observers” or “systems,” they445

fail to commute, i.e., the commutator [Q1, Q2] = Q1Q2 − Q2Q1 ≥ h/2, where again h is446

Planck’s constant. As shown in [57], Theorem 3.4 using the CCCD representation, non-447

commutativity of QRFs induces quantum contextuality, i.e., dependence of measurement448
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results on “non-local hidden variables” that characterize the measurement context [105,449

106, 107]. In the current context, such hidden variables characterize the action of HB on450

B, affecting what A will observe next in every cycle of A-B interaction.451

As shown in [63], such context dependence can, in principle, be captured classically if452

sufficient measurements of the context can be implemented. Such measurements would,453

however, have to access all of B. The existence of an MB prevents such access; in the454

current setting, A has access to B only via B. The finite energetic cost of measurement,455

and consequent requirement for a thermodynamic sector F , prevents measurement even of456

all of B by any finite physical system. Hence, we can expect physical systems, including457

all biological systems, to employ only local context-dependent control to switch between458

mutually non-commuting (sets of) QRFs. How context switches implemented by QRF459

switches induce evolution, development and learning was introduced in [22]. Some specific460

examples of context switching in biological systems will be discussed Part II.461

3 Conclusion462

We have shown in this Part I how the problem of defining control flow arises in active infer-463

ence systems, and provided three formal representations of the problem. Control flow can,464

in particular, be represented as switching between classical dynamical attractors, between465

deployed QRFs, and between computational processes represented by TQFTs. Implement-466

ing control flow has a free-energy cost; hence any control-flow system must trade off its own467

processing costs against the expected benefits of switching between input/ouput modes.468

The time and memory dependence of control flow can, moreover, be expected to lead469

generically to context effects on both perception and action.470

In the accompanying Part II of this paper, we will first prove that control flows in active471

inference systems can always be represented as TNs, and show how TN architectures provide472
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a convenient classification control flows. We then show how these can be implemented by473

TQNNs, and discuss applications of this formalism to the problem of characterizing control474

flow in biological systems.475
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[71] Sakthivadivel, D. A. R. 2022 A constraint geometry for inference and integration.642

Preprint arXiv:2203.08119.643

[72] Sakthivadivel, D. A. R. 2022 Towards a geometry and analysis for Bayesian mechanics.644

Preprint arXiv:2204.11900.645

[73] Landauer, R. 1961 Irreversibility and heat generation in the computing process. IBM646

J. Res. Dev. 5, 183–195.647

33



[74] Jarzynski, C. 1997 Nonequilibrium equality for free energy differences. Phys. Rev.648

Lett. 78(14), 2690–2693.649

[75] Evans, D. J. 2003 A non-equilibrium free energy theorem for deterministic systems.650

Molec. Phys 101(10), 1551–1554.651

[76] Friston, K., Thornton, C., Clark, A. 2012 Free-energy minimization and the dark-652

room problem. Front. Psychol. 3, 130.653

[77] Pezzulo, G., Rigoli, F., Friston, K. 2015 Active Inference, homeostatic regulation and654

adaptive behavioural control. Prog. Neurobiol. 134, 17–35.655

[78] Friston, K., Rigole, F., Ognibene, D., Mathys, C., Fitzgerald, T., Pezzulo, G. 2015656

Active inference and epistemic value. Cogn. Neurosci. 6, 187-214.657

[79] Schmidhuber, J. 1991 Curious model-building control-systems. 1991 IEEE Interna-658

tional Joint Conference on Neural Networks, Vols 1-3; 2, 1458–1463.659

[80] Sun, Y., Gomez, F., Schmidhuber, J. 2011 Planning to be surprised: Optimal660

Bayesian exploration in dynamic environments. Artificial General Intelligence. J.661
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[93] Kerskens, C. M., Pérez, D. L. 2022 Experimental indications of non-classical brain688

functions. J. Phys. Commun. 6, 105001.689
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