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Abstract 

 Does natural selection favor veridical percepts—those that accurately (if not 

exhaustively) depict objective reality? Perceptual and cognitive scientists standardly 

claim that it does. Here we formalize this claim using the tools of evolutionary game 

theory and Bayesian decision theory. We state and prove the “Fitness-Beats-Truth (FBT) 

Theorem” which shows that the claim is false: If one starts with the assumption 

that perception involves inference to states of the objective world, then the FBT Theorem 

shows that a strategy that simply seeks to maximize expected-fitness payoff, with no 

attempt to estimate the “true” world state, does consistently better. More precisely, the 

FBT Theorem provides a quantitative measure of the extent to which the fitness-only 

strategy dominates the truth strategy, and of how this dominance increases with the size 

of the perceptual space. The FBT Theorem supports the Interface Theory of Perception 

(e.g. Hoffman, Singh & Prakash, 2015), which proposes that our perceptual systems have 

evolved to provide a species-specific interface to guide adaptive behavior, and not to 

provide a veridical representation of objective reality. 
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Theory; Fitness; Evolutionary Game Theory; Interface Theory of Perception	  



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

4	

Introduction 

 It is standard in the perceptual and cognitive sciences to assume that more 

accurate percepts are fitter percepts and, therefore, that natural selection drives perception 

to be increasingly veridical, i.e., to reflect the objective world in an increasingly accurate 

manner. This assumption forms the justification for the prevalent view that human 

perception is, for the most part, veridical.  For example, in his classic book Vision, Marr 

(1982) argued that: 

“We ... very definitely do compute explicit properties of the real visible surfaces 

out there, and one interesting aspect of the evolution of visual systems is the 

gradual movement toward the difficult task of representing progressively more 

objective aspects of the visual world”. (p. 340) 

Similarly, in his book Vision Science, Palmer (1999) states that: 

“Evolutionarily speaking, visual perception is useful only if it is reasonably 

accurate ... Indeed, vision is useful precisely because it is so accurate. By and 

large, what you see is what you get. When this is true, we have what is called 

veridical perception ... perception that is consistent with the actual state of affairs 

in the environment. This is almost always the case with vision.”  

In discussing perception within an evolutionary context, Geisler and Diehl (2003) 

similarly assume that: 

 “In general, (perceptual) estimates that are nearer the truth have greater utility 

than those that are wide off the mark.” 
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In their more recent book on human and machine vision, Pizlo et al. (2014) go so far as to 

say that: 

“…veridicality is an essential characteristic of perception and cognition. It is 

absolutely essential. Perception and cognition without veridicality would be like 

physics without the conservation laws.” (p. 227, emphasis theirs.) 

 These statements reflect three assumptions that are useful to distinguish. The first 

is that all organisms are embedded in and are continually interacting with an "objective" 

world whose properties can be specified entirely independently of the state or even the 

existence of any particular organism. The second—the assumption of veridicality—is that 

at least for humans (and presumably for other “higher” organisms), the apparent state of 

the world is homomorphic to the actual state of the world. The third, generally implicit, 

assumption is that (at least for humans) this veridical state of the world is the apparent 

state of the world that is consciously experienced and reportable to third parties, e.g., 

experimenters conducting experiments on visual perception. The actual state of the world 

is, in particular, assumed to objectively include the objects and have the attributes 

assigned to it by human perceptual experience.  

 Our visually perceived world is three-dimensional, and is inhabited by objects of 

various shapes, sizes, colors, and motions. Perceptual and cognitive scientists thus 

typically assume that the objective world is three-dimensional, and is inhabited by objects 

of those very shapes, sizes, colors, and motions. In other words, they assume that the 

vocabulary of our perceptual representations – the vocabulary of moving, propertied 

objects in space and time – is the correct vocabulary for describing the objective world. 
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This operational assumption is accompanied by an ontological assumption that the 

specific objects and attributes we perceive typically reflect the actual, independently 

existing objects and attributes of the objective world. These assumptions are implicitly 

embedded within the standard Bayesian framework for visual perception, as we will see 

in the next section.	

 This standard assumption of veridical percepts of independently-existing objects 

goes hand-in-hand with the framework of inverse optics in vision science: It is standardly 

assumed that the goal of the visual system is to “undo” the effects of optical projection 

(or rendering) from 3D scenes to 2D images (e.g. Adelson & Pentland, 1996; Pizlo, 

2001). This presumably allows vision to “recover” the 3D scene that is most likely to 

have produced any given image(s). As we will see in Section 2, the inverse optics 

conception also forms the basis of the standard Bayesian framework for vision. Within 

this Bayesian formulation, veridicality corresponds to the strategy of finding the 3D 

scene—the perceived interpretation—that has the highest probability of being the 

“correct” one, given any image(s).	

 Many vision scientists agree that perception is not always veridical, i.e., errors in 

object identification or characterization are possible, but most believe that it is at least 

approximately veridical. While we might not visually experience the correct three-

dimensional shape of some, or even most objects, for example, it is almost universally 

assumed that there are objects in the world that have well-defined, fully-objective and 

hence completely observer-independent three-dimensional shapes that could, at least in 

principle, be accurately experienced by an "ideal" observer. 	
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 Proponents of embodied cognition argue that perception is a presentation, rather 

than a representation, of the world, and also claim that perception is normally veridical. 

For instance, Chemero (2009) argues “that (1) at least some of perceptions/ 

thoughts/theories are accurate, and (2) that the objects of our accurate 

perceptions/thoughts/theories exist in an animal-independent world.” 

 Contrary to the standard, inverse-optics based framework for visual perception, 

we do not believe that it is meaningful to think of perception as involving inferences 

“back” to states of the objective world; we summarize our alternative approach in the 

next section, under Computational Evolutionary Perception. In the spirit of a reductio-

ad-absurdum proof, however, we adopt a working assumption that perception does 

involve making inferences to states of the objective world, and add to this universally-

accepted assumption that states of the world (whatever they are) have fitness 

consequences. Under these assumptions, we compare two different strategies. 

Veridicality, in the form of the standard Bayesian framework, is represented by the 

“truth” strategy. The alternative is a “fitness-only” strategy that does not assume veridical 

perception. In order to compare the two strategies—truth vs. fitness-only—we place them 

in competition in an evolutionary resource-game context. Given some sensory inputs, the 

truth strategy attempts to estimate the most probable world state(s) for each input. (In 

some instances, this process may result in two or more equally probable states, such as in 

the well-known Necker cube.) It then compares the fitness of these most probable world 

states and picks the one with the highest fitness. The fitness-only strategy, on the other 

hand, makes no attempt to estimate the most likely world state corresponding to each 

sensory input. It simply computes the expected fitness corresponding to each input 
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directly, via the posterior distribution (so that the fitness of any world state is weighted by 

its posterior probability), and then picks the input with the maximum expected fitness. 

We prove that organisms that identify and hence acquire resources using the fitness-only 

strategy dominate those using the truth strategy. Indeed, our “fitness beats truth” theorem 

provides a quantitative measure of the extent to which the fitness-only strategy dominates 

the truth strategy, as well as how this dominance varies with the size of the perceptual 

space. Our purpose is not to support the particular fitness-only strategy that we consider 

here, but to reveal the evolutionary inferiority of the truth strategy.	

  The “fitness beats truth” theorem therefore strongly calls into question the 

standard view that more accurate percepts are fitter, and hence that natural selection 

evolves perceptual systems to have more and more veridical percepts. Even under the 

standard assumption that perception involves inferences back to states of the objective 

world, the “truth” or veridicality strategy loses to the “fitness-only” strategy. This calls 

into question the received textbook view in vision science that human vision is normally 

veridical. At a more fundamental level, it even calls into question the idea that the goal of 

vision is to “invert optics”—i.e., to “undo” the effects of optical projection from 3D 

objects to 2D images to infer an “actual” world state. If our percepts do not correspond to 

objective reality, and indeed make no attempt to correspond to an objective reality, then 

3D objects themselves are simply part of our own species-specific perceptual interface, 

not part of an observer-independent reality. This understanding is captured in our 

framework of Computational Evolutionary Perception, which we outline in the next 

section (see also Hoffman & Singh, 2012; Singh & Hoffman, 2013; Hoffman, Singh, & 

Prakash, 2015).  	
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Probabilistic approaches to visual perception 

The standard Bayesian framework for visual perception 

The standard approach to visual perception treats it as a problem of inverse optics: 

The “objective world”— generally taken to be 3D environments consisting of objects, 

surfaces, and light sources—projects 2D images onto the retinas. Given a retinal image, 

the visual system’s goal is to infer the 3D scene that is most likely to have projected it 

(e.g. Adelson & Pentland, 1996; Knill & Richards, 1996; Mamassian, Landy, & 

Maloney, 2002; Shepard, 1994; Yuille & Bülthoff, 1996). Since a 2D image does not 

uniquely specify a 3D scene, the only way to infer a 3D scene is to bring additional 

assumptions or “biases” to bear on the problem, based on prior experience—whether 

phylogenetic or ontogenetic (Feldman, 2013; Geisler et al. 2001). For example, in 

inferring 3D shape from image shading, the visual system appears to make the 

assumption that the light source is more likely to be overhead (e.g. Kleffner & 

Ramachandran, 1992). Similarly, in inferring 3D shape from 2D contours, it appears to 

use the assumption that 3D objects are maximally compact and symmetric (e.g. Li et al., 

2013). 

 Formally, given an image !", the visual system aims to find the “best” (generally 

taken to mean “most probable”) scene interpretation in the world. In probabilistic terms, 

it must compare the posterior probability #(%|!") of various scene interpretations %, 

given the image !". By Bayes’ Rule, the posterior probability is given by: 
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  #(%|!") =
)*!"+%,∙)(.)

)(/0)
  

Since the denominator term #(!") does not depend on %, it plays no essential role in 

comparing the relative posterior probabilities of different scene interpretations w. The 

posterior probability is thus proportional to the product of two terms: The first is the 

likelihood #(!"|%) of any candidate scene interpretation w; this is the probability that the 

candidate scene w could have projected (or generated) the given image !". Because any 

2D image is typically consistent with many different 3D scenes, the likelihood will often 

be equally high for a number of candidate scenes. The second term is the prior probability 

#(%) of a scene interpretation; this is the probability that the system implicitly assigns to 

different candidate scenes, even prior to observing any image. For example, the visual 

system may implicitly assign higher prior probabilities to scenes where the light source is 

overhead, or to scenes that contain compact objects with certain symmetries. Thus, when 

multiple scenes have equally high likelihoods (i.e., are equally consistent with the image), 

the prior can serve as a disambiguating factor. 

 Application of Bayes’ Rule yields a probability distribution on the space of 

candidate scenes—the posterior distribution. A standard way to pick a single “best” 

interpretation from this distribution is to choose the world scene that has the maximal 

posterior probability—one that, statistically speaking, has the highest probability of being 

the “correct” one, given the image !". This is the maximum-a-posteriori or MAP 

estimate. More generally, the strategy one adopts for picking the “best” answer from the 

posterior distribution depends on the choice of a loss (or gain) function, which describes 

the consequences of making “errors,” i.e., picking an interpretation that deviates from the 
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“true” (but unknown) world state by varying extents. The MAP strategy follows under a 

Dirac-delta loss function—no loss for the “correct” answer (or “nearly correct” within 

some tolerance), and equal loss for everything else. Other loss functions (such as the 

squared-error loss) yield other choice strategies (such as the mean of the posterior 

distribution; see e.g. Mamassian et al., 2002). But we focus on the MAP estimate here 

because it yields, in a well-defined sense, the highest probability of picking the “true” 

scene interpretation within this framework (and hence corresponds most closely to a 

probabilistic formulation of veridicality). 

 This standard Bayesian approach embodies the “veridicality” or “truth” approach 

to visual perception. We do not mean, of course, that the Bayesian observer always gets 

the “correct” interpretation. Given the inductive nature of the problem, that would be a 

mathematical impossibility. It is nevertheless true that:  

(i) The space of hypotheses or interpretations from which the Bayesian observer 

chooses is assumed to correspond to the objective world (i.e., to the space of 

possible objective-world states). That is, the vocabulary of perceptual 

experiences (or hypotheses or interpretations) is assumed to be the right 

vocabulary for describing (the possible states of) objective reality.  

(ii) Given this setup, the MAP strategy maximizes—statistically speaking—the 

probability of picking the “true” world state. 

This framework constitutes the standard Bayesian framework for vision—i.e., the way in 

which Bayes’ Theorem is standardly applied in modern vision science to model various 

problems in visual perception, including not just the recognition and characterization of 
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static objects but also the determination of the locations of objects and the estimation of 

their 3D trajectories. This is not, however, the only way to apply Bayes’ Theorem to 

problems in vision. 

Computational Evolutionary Perception 

Note that, in the standard Bayesian framework for vision summarized above, the 

space W plays two distinct roles: it corresponds to the space of objective-world states, 

and it also corresponds to the space of perceptual interpretations or hypotheses from 

which the visual system must choose.  The inverse-optics assumption makes these two 

roles explicit: the image is a projection, via the physics of light, of W onto the retina, 

while the task of the visual system is to undo this projection to recover the layout, in W, 

that produced the projection.  Thus this framework explicitly conflates the Bayesian 

interpretation space (a space of representations constructed by internal cognitive 

processes) with the objective world (or, to be more precise, with the space of possible 

objective-world states) by assuming that their structures are homomorphic. This is the 

assumption that the language of our perceptual representations is the correct language for 

describing objective reality—an assumption that may be mistaken. If we remove this 

assumption, the probabilistic inference that results in perceptual experience takes place in 

a separate, explicitly internal, space of perceptual representations, say, X1, that may not 

be homomorphic to W in any respect. This alternative, extended framework of 

Computational Evolutionary Perception (CEP) is sketched in Figure 1 (see Hoffman & 

Singh, 2012; Hoffman, Singh, & Prakash, 2015; Singh & Hoffman, 2013). 	
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  In this CEP framework, when we see an object as having a certain 3D shape, it is 

because the probabilistic inference in the relevant perceptual space X1 resulted in that 3D 

interpretation. But the perceptual space X1 is not the objective world, nor is it 

homomorphic to it. It is simply a representational format that has been crafted by natural 

selection in order to support more effective interactions with the environment (in the 

sense of resulting in higher expected-fitness payoff, and of better predicting the results of 

our actions back in our perceptual space). In other words, a more complex or higher-

dimensional representational format (such as one involving 3D representations in 12, in 

place of just 2D representations in 1") evolves because it permits a higher-capacity 

channel  for expected fitness (see Figure 1). But this does not in any way 

entail that this representational format somehow more closely “resembles” the objective 

world. Evolution can fashion perceptual systems that are, in this sense, ignorant of the 

objective world because natural selection depends, as recognized by Pinker (2005), 

Koenderink (2011; 2013), von Uexküll (1957) and others, only on fitness and not on 

seeing the “truth.”	

 As noted above, however, for the purposes of the current paper we will start with 

the standard assumption made in the literature that perception does involve making 

inferences back to states of the objective world, i.e., to W (rather than to 12as in Figure 

1). And, under this assumption, we will articulate two competing strategies corresponding 

to veridicality (or “truth”) and fitness-only. Before we can do so, however, we must 

introduce the all-important notion of fitness.  

 

P1 :W → X1
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Evolution and Fitness 

 The standard Bayesian framework, with the standard interpretation summarized 

above, focuses on estimating the world state that has the highest probability of being the 

“true” one, given some sensory input. This Bayesian estimation involves no explicit 

notion of evolutionary fitness (although by defining prior probabilities over states w of 

the world, it implicitly builds in the assumption that truer percepts are more fit). As we 

noted in the previous section, approaches based on Bayesian Decision Theory (BDT) do 

involve a loss (or gain / utility) function. It is important to note, however, that this is quite 

distinct from a fitness function (defined below). The loss function of BDT describes the 

consequences of making “errors,” i.e., picking an interpretation that deviates from the 

“true” world state by varying extents. It is therefore a function of two variables: (i) the 

observer’s estimate / interpretation, and (ii) the “true” state of the world. By contrast, the 

evolutionary fitness function involves no dependence on the observer’s estimate (whereas 

it does depend on the observer, its state, and the action class in question; see below).  

 In evolutionary theory, fitness is a measure of the probability of transferring 

genes, and therefore characteristics, into the next generation (Maynard Smith, 1989). The 

effects on fitness of different decisions or behaviors by an organism or population can be 

represented by a global fitness function f(w, o, s, a) that depends, in general, on the state 

w of the world W in which behavior takes place, the organism o executing the behavior 

(e.g., a lion vs. a rabbit), the organism’s state s (e.g., hungry vs. satiated), and the action a 

that is executed (e.g., feeding vs. mating). Fitness functions vary widely between 

organisms; indeed, the diversity of extant organisms indicates that the correlation 

between fitness functions for distinct organisms can be arbitrarily small. For any 
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particular organism, the complexity of the fitness function can be expected to increase 

rapidly as the number of its possible states and actions increases; even the fitness function 

for a bacterium is extraordinarily complex.  

 To examine the behavior of f(w, o, s, a) in a game-theoretic context, we can think 

of organisms of different kinds as competing to gather “fitness points” as they interact 

within the shared “environment” W (Maynard Smith, 1982). In such a competitive game, 

natural selection favors percepts and choices that yield more fitness points. For 

simplicity, we consider evolutionary games between organisms of the same type o, in the 

same state s, and with only a single available action a. In this case, we can model a 

specific fitness function as simply a (non-negative) real-valued function 3:5 → [0,∞) 

defined on the world W.   

 In order to compare the fitness of different perceptual and/or choice strategies, 

one pits them against one another in an evolutionary resource game (for simulations 

exemplifying the results of this paper, see, e.g., Mark, Marion, & Hoffman, 2010; 

Marion, 2013; and Mark, 2013). In a typical game, two organisms employing different 

strategies compete for available territories, each with a certain number of resources. The 

first player observes the available territories, chooses (or simply names) what it estimates 

to be its optimal one, and receives the fitness payoff for that territory. The second player 

then chooses (or simply names)  its optimal territory from the remaining available ones. 

The two organisms thus take turns in picking territories, seeking to maximize their fitness 

payoffs.  
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 In this case, the quantity of resources in any given territory is the relevant world 

attribute w. That is, W is here interpreted as depicting different quantities of some 

relevant resource. We can then consider a perceptual map , where X is the set 

of possible perceptual states, together with an ordering on it: P picks out the “best” 

element of X in a sense relevant to the perceptual strategy. One may, for instance, 

imagine a simple organism whose perceptual system has only a small number of distinct 

perceptual states. Its perceptual map would then be some way of mapping various 

quantities of the resource to the small set of available perceptual states. As an example, 

Figure 2 shows two possible perceptual mappings, i.e., two ways of mapping the quantity 

of resources (here, ranging from 0 through 100) to four available sensory categories (here 

depicted here by the four colors R, Y, G, B). 

 In addition, there is a fitness function on W, 3:5 → [0,∞), which assigns a non-

negative fitness value to each resource quantity.  One can imagine fitness functions that 

are monotonic (e.g. fitness may increase linearly or logarithmically with the number of 

resources), or highly non-monotonic (e.g. fitness may peak for a certain number of 

resources, and decrease in either direction). Monotonic fitness functions can be expected 

to be rare; it is possible to have “too much” of a typical resource. The vast majority of 

fitness functions will be non-monotonic (such as the one shown in Figure 3): too little 

water and one dies of thirst, too much water and one drowns. Similar arguments apply to 

the level of salt, or to the proportion of oxygen and indeed most other resources.  Given 

the ubiquitous need for organisms to maintain homoeostasis, and the invariably limited 

energetic resources available to do so, one expects most fitness functions to be non-

P :W → X
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monotonic. In what follows, we will consider fitness functions generically, among which 

monotonic functions constitute an extremely small subset.1  

 One simple consequence of non-monotonic fitness functions is that fitness and 

“truth” are not in general correlated. It is sometimes argued that a strategy based on 

fitness works simply because it allows one to approximate the truth.  In the absence of 

any generic correlations between fitness and truth, however, this argument carries little 

weight. It is in fact not meaningful to view fitness functions as “approximating” the truth. 

Recall also that, while fitness clearly depends on the world (“truth”), it also depends on 

the organism, its state, and the action class in question. Thus, considering a different 

organism, or the same organism in a different state, or in the context of a different action 

class, will result in very different fitness values—even as the world remains unchanged. 

 

 

Comparing perceptual strategies: “Truth” vs. “Fitness-only” 

 In the context of these evolutionary games, in which perceptual strategies 

compete for resource acquisition, we assume that the organism’s behavior depends on 

three fixed elements: the specific fitness function (in a particular state and for a particular 

action class), its prior, and its perceptual map from world states (i.e., resource-containing 

territories) to sensory states (see Figure 4). On any given trial, the organism observes a 

number of available territories through its sensory states, say x1, x2,…, xn. Its goal is to 
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pick (or simply name) one of these territories, seeking to maximize its fitness payoff. One 

can now consider two possible resource strategies: 

 The “Truth” strategy: For each of the n sensory states, the organism estimates the 

world state or territory - the Bayesian MAP estimate - that has the highest probability of 

being the “true” one, given that sensory state. It then compares the fitness values for these 

n “true” world states. Finally, it makes its choice of territory based on the sensory state(s) 

xi that yields the highest fitness. Its choice is thus mediated through the MAP estimate of 

the world state: it cannot choose a territory that does not qualify as “true.” The "Truth" 

strategy ignores any fitness information about possible states of the world other than the 

one selected as being the "true" state.  

 The “Fitness-only” strategy: In this strategy, the organism makes no attempt to 

estimate the “true” world state corresponding to each sensory state. Rather it directly 

computes the expected fitness payoff that would result from each possible choice of xi. 

For a given sensory state xi, there is a posterior probability distribution (given, as with the 

Truth strategy, by Bayes’ formula) on the possible world states, as well as a fitness value 

corresponding to each world state. The organism weights these fitness values by the 

posterior probability distribution, in order to compute the expected fitness that would 

result from the choice xi. And it picks the one with the highest expected fitness. 
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Results from Evolutionary Game Theory 

 In an evolutionary game between the two strategies, say A and B, the payoff 

matrix is as follows:  

;<;=>?@	B ;<;=>?@	C
B	DE;F? ; G
C	DE;F? H I

 

Here a, b, c, and d denote the various payoffs to the row player when playing against the 

column player. E.g., b is the payoff to A when playing B. We will refer to three main 

theorems from evolutionary game theory relevant to our analysis, as follows. 

 We first consider games with infinite populations. These are investigated by 

means of a deterministic differential equation, called the replicator equation, where time 

is the independent variable and the relative population sizes !J, !Kare the dependent 

variables, with !J + !K = 1 (Taylor and Jonker, 1978, Hofbauer and Sigmund, 1990, 

Nowak 2006). In this context, there are four generic behaviors in the long run:  

Theorem 1. (Nowak 2006) In a game with an infinite population of two types, A and B, of 

players, either  

(i) A dominates B (in the sense that a non-zero proportion of A players will eventually 

take over the whole population), if ; ≥ H  and b	≥ I , with at least one of the 

inequalities being strict; 

(ii) B dominates A, if ; ≤ H and b	≤ I, with at least one of the inequalities being strict; 

(iii) A and B coexist, if ; ≤ H and b	≥ I (with at least one of the inequalities being 

strict), at a stable equilibrium given by !J∗ =
QRS

QTURVRS
 (and !K∗ = 1 − !J

∗); 
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(iv) The system is bistable, if ; ≥ H and b	≤ I (with at least one of the inequalities 

being strict) and will tend towards either all A or all B from an unstable equilibrium 

at the same value of  !J∗ as above. 

A fifth, non-generic possibility is that ; = H and  G = I, in which case we have that A and 

B are neutral variants of one another: any mixture of them is stable.  

 Games with a finite population size N can be analyzed via a stochastic, as against 

deterministic, approach. Their dynamics are described by a birth-death process, called the 

Moran process (Moran 1958). The results are more nuanced than in the infinite population 

sized case: there are now eight possible equilibrium behaviors, and they are population 

dependent, not just payoff dependent.  

 Let XJK  denote the fixation probability of a single A individual in a population of 

N-1 B individuals replacing (i.e., taking over completely) that population. Similarly, let 

XKJ  denote the fixation probability of a single B individual in a population of N-1 of A 

individuals replacing (i.e., taking over completely) that population. In the absence of any 

selection, we have the situation of neutral drift, where the probability of either of these 

events is just 2
Y

.  We say that selection favors A replacing B if XJK >
2

Y
 and that selection 

favors B replacing A if XKJ >
2

Y
.  

 By analyzing the probabilities of a single individual of each type interacting with 

an individual of either type, or of dying off, we can use the payoff matrix above to compute 

the fitness [\, when there are i entities of type A, and the fitness ]\ of (the N-i individuals) 

of type B. If we set ℎ\ = [\ − ]\  (= = 1, . . . , ` ), we can see that ℎ2 > 0  implies that 
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selection favors A invading B, while ℎYR2 > 0 implies that selection favors B invading A. 

There are now sixteen possibilities, depending upon whether selection favors A replacing 

B or not; B replacing A or not; whether selection favors A invading B or not; and whether 

selection favors B invading A or not. Of these, eight are ruled out by a theorem of Taylor, 

Fudenberg, Sasaki and Nowak (2004). A full description is provided in that paper, along 

with a number of theorems detailing the possibilities in terms of the payoff values and 

population size. Their Theorem 6, interpreted below as our Theorem 2, is most relevant to 

our analysis of evolutionary resource games: it gives conditions under which selection is 

independent of population size and is reproduced below. Interestingly, for finite 

populations the relationship between payoffs b and c becomes relevant: 

Theorem 2.  In a game with a finite population of two types of players, A and B, if  G >

H, ; > H and G > I, we have for all N, ℎ\ > 0∀= and XJK >
2

Y
> XKJ: selection favors A. 

 Finally, we also consider, within large finite populations, the limit of weak selection. 

In order to model the strength of selection, a new parameter w is introduced. This parameter, 

lying between 0 and 1, is a measure of the strength of selection: we write the fitness of A 

now as 3\ = 1 − % + %[\ and the fitness of B now as <\ = 1 − % + %]\. When % = 0, 

there is no selection: the fitnesses are equal and we have neutral drift. When % = 1, we 

have selection at full strength. An analysis of the dynamics of the Moran process under 

weak selection (i.e., in the limit as % → 0), reveals (following Nowak 2006, equation 7.11) 

that: 
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Theorem 3. In a game with a finite population of two types of players, A and B, and with 

weak selection, (; − H) + 2(G − I) > c(VRU)R(QRS)

Y
 implies that XJK >

2

Y
. Thus, if ; > H 

and G > I, for large enough N, selection favors A.2 

 

Evolutionary Resource Games 

  For our situation of two resource strategies, we may define the payoff matrix as 

follows: 

a: to Fitness-Only when playing against 

Fitness-Only 

b: to Fitness-Only when playing against 

Truth 

c: to Truth when playing against Fitness-

Only 

d: to Truth when playing against Truth 

 

 In a game with a very large (effectively infinite) number of players, the Fitness-

Only resource strategy dominates the Truth strategy (in the sense that Fitness-Only will 

eventually drive Truth to extinction) if the payoffs to Fitness-Only as first player always 

exceed those of Truth as first player, regardless of who the second player is, i.e., if ; ≥ H  

and G ≥ I and if at least one of these is a strict inequality. If neither of these inequalities 

is strict, then at the least Fitness-Only will never be dominated by Truth.  

 Our main claim in this paper is that the Truth strategy—attempting to infer the 

“true” state of the world that most likely corresponds to a given sensory state—confers no 

evolutionary advantage to an organism. In the next section, we state and prove a 
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theorem—the “Fitness Beats Truth" theorem—which states that Fitness-Only will never 

be dominated by Truth. Indeed, the Truth strategy will generally result in a lower 

expected-fitness payoff than the Fitness-Only strategy, and is thus likely to go extinct in 

any evolutionary competition against the Fitness-Only strategy. (The statement of the 

FBT theorem articulates the precise way in which this is true.) We begin, first, with a 

numerical example that exemplifies this. 

Numerical Example of Fitness Beating Truth 

 We give a simple example to pave the way for the ideas to follow. Suppose there 

are three states of the world, 5 = {%2,%c, %e} and two possible sensory stimulations, 1 =

{!2, !c} . Each world state can give rise to a sensory stimulation according to the 

information contained in Table 1. The first two columns give the likelihood values,#(!|%), 

for each sensory stimulation, given a particular world state; for instance, #(!2|%c) = 3 4.⁄  

The third column gives the prior probabilities of the world states. The fourth column shows 

the fitness associated with each world state. If we think of the world states as three different 

kinds of food that an organism might eat, then these values correspond to the fitness benefit 

an organism would get by eating one of the foods. With this analogy, %2 corresponds to an 

extremely healthful (but relatively rare) food, while %c and %e correspond to moderately 

healthful (and more common) foods, with %c being more healthful than %e (see Table 1). 

This setup is the backdrop for a simple game where observers are presented with two 

sensory stimulations and forced to choose between them. 

 Using Bayes’ theorem we have calculated (see Appendix) that for !2 the Truth (i.e., 

the maximum-a-posteriori) estimate is %c, and that for !c this estimate is %e. Thus, if a 
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Truth observer is offered a choice between two foods to eat, one that gives it stimulation 

!2 and one that gives it stimulation !c, it will perceive that it has been offered a choice 

between the foods %c and %e. Assuming that it has been shaped by natural selection to 

choose, when possible, the food with greater fitness, it will always prefer %c. So, when 

offered a choice between !2 and !c, the Truth observer will always choose !2, with an 

expected utility of 5.  

 Now suppose a Fitness-only observer is given the same choice. The Fitness-only 

observer is not at all concerned with which “veridical” food these signals most likely 

correspond to, but has been shaped by natural selection to only care about which stimulus 

yields a higher expected fitness. We have calculated (see Appendix) that the expected 

utility of sensory stimulation !2 is 5 and the expected utility of stimulation !cis 6.6. Thus, 

when offered a choice between !2  and !c , the Fitness-only observer will always, 

maximizing expected fitness, choose !c.  

 The implications of these results are clear. Consider a population of Truth 

observers competing for resources against a population of Fitness-only observers, both 

occupying the niche described by Table 1. Since, in this case, the Truth observer’s choice 

minimizes expected fitness and the Fitness-only observer’s choice maximizes expected 

fitness, the Fitness-only population will be expected to drive the population of Truth 

observers to extinction. Seeing truth can minimize fitness; thereby leading to extinction. 

This conclusion is apart from considerations of the extra energy required to keep track of 

truth (see Mark, Marion and Hoffman 2010, for discussion on energy resources). 
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 In psychological terms, the advantage of Fitness-only over Truth in the niche 

described by Table 1 is due to perceptual ambiguity: the percept !c is ambiguous 

between the excellent resource %2 and the moderately-good resource %e. Ambiguous 

percepts are, however, common; percepts can indeed be ambiguous between very good 

and very bad outcomes, as stock pickers, sushi connoisseurs and practitioners of serial 

romance know all too well. The Truth player executes a correct MAP estimate, but 

ignores the possibility of ambiguity along the dimension that actually matters, i.e., 

fitness. A high value of fitness associated with !c  is not plausible given the low value of 

the prior P(%2). By choosing the MAP estimate instead of performing a full expected 

fitness calculation, the Truth player “jumps to conclusions” along the most important 

dimension. From this perspective, employing the Truth strategy is a fallacy of practical 

reasoning, analogous in its effects to ignoring priors when estimating posterior 

probabilities (Kahneman, 2011).  

 

Mathematical Background for the Main Theorem 

 We assume that there is a fixed perceptual map, p, which associates to each world 

state % ∈ 5a sensory state ! ∈ 1. And we assume a fitness map on W (recall Figure 4). 

This places the Truth strategy and the Fitness-only strategy on a common footing where 

they can be set in direct competition against each other within the context of an 

evolutionary resource game.  

 We begin with some definitions and assumptions regarding these spaces and 

maps. 
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 It will suffice for a basic understanding of what follows to think of W as a finite set 

(as in the example in 6.1).3 More generally, we take the world W to be a compact regular 

Borel space whose collection of measurable events is a k-algebra, denoted ℬ.4 We assume 

that < 5,ℬ > comes equipped with an a priori probability measure n  on ℬ . We will 

consider only those probability measures n that are absolutely continuous with respect to 

the Borel measure on ℬ. That is, if we write d% for the uniform, or Borel, probability 

measure on W, then the a priori measure satisfies n(I%) = <(%)	d%. Here <:5 → ℝT is 

some non-negative measurable function, called the density of n, satisfying 	∫ <(%)	d% =

1. We will take any such density to be continuous, so that it always achieves its maximum 

on the compact set W. This constitutes the structure of the world: a structure that applies to 

most commonly studied biological and perceptual situations. 

 We may assume that a given species interacts with its world, employing a 

perceptual mapping that “observes” the world via a measurable map D:	5 → 1. We refer 

to this as a pure perceptual map because it involves no dispersion: each world state can 

yield only a single sensory state x. We assume that the set of perceptual states X is a finite 

set, with the standard discrete k-algebra r, i.e., all subsets of X are measurable.5  

 

General Perceptual Mappings and Bayesian Inference  

 We use the letter ℙ to indicate any relevant probability. Bayesian inference consists 

in a computation of the conditional probability measure ℙ(d%	|	!) on the world, given a 

particular perception !  in X. The likelihood function is the probability ℙ(!	|	%) that a 

particular world state % could have given rise to the observed sensory state !.	Then the 
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conditional probability distribution ℙ(I%	|	!) is the posterior probability distribution in a 

(partially) continuous version of Bayes formula: 

ℙ(d%	|	!) =
ℙ(!	|	%)		ℙ(d%)

ℙ(!)
. 

Since n, the prior on W, has a density < with respect to the Borel measure d%, we can 

recast this formula in terms of <:  indeed, ℙ(d%	|	!)  also has a conditional density, 

<(%	|	!), with respect to the Borel measure6 and we obtain 

<(%	|	!) =
ℙ(!	|	%)		<(%)

∫ℙ(!	|	%′)	<(%′)
. 

 We now define a maximum a posteriori estimate for ! in X to be any %/ at which 

this conditional density is maximized: <(%/	|!) = max{	<(%	|!)	|	% ∈ 5}.  At least one 

such maximum will exist, since < is bounded and piecewise continuous; however, there 

could be multiple such estimates for each !. 

 For a given sensory state !, the only world states that could have given rise to it lie 

in the fiber over !, i.e., the set DR2{!} ⊂ 5. So, for a given !, the mapping % → ℙ(!	|	%) 

takes the value 1 on the fiber, and is zero everywhere else. This mapping may thus be 

viewed as the indicator function of this fiber. We denote this indicator function by 

1vwx{/}(%). 

 For a pure mapping the conditional density is just 

<(%	|	!) =
<(%) ⋅ 1vwx{/}(%)

n(DR2{!})
, 
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where n(DR2{!}) is the a priori measure of the fiber.  

 In this special case of a pure mapping that has given rise to the perception !, we 

can diagram the fiber over x on which this average fitness is computed. This is the shaded 

region in Figure 5.  

Expected Fitness  

 Given a fitness function 3:5 → [0,∞) that assigns a non-negative fitness value 

to each world state, the expected fitness of a perception ! is 

[(!) = {3(%)	ℙ(d%	|	!) 	= {3(%)<(%	|	!)	d% . 

Two Perceptual Strategies 

 We may build our two perceptual strategies #|, #}, called “Truth” and “Fitness-

Only” respectively, as compositions of a “sensory” map D:5 → 1 that recognizes 

territories and “ordering” maps I|, I}: 1 → 1, where #| = I| ∘ D  and #} = I} ∘ D. That 

is, the map I| re-names the elements of X by re-ordering them, so that the best one, in 

terms of its Bayesian MAP estimate, is now the first, !2, the second best is !c etc. The 

map I}, on the other hand, re-orders the elements of X so that the best one, in terms of its 

expected fitness estimate, is !2, the second best is !c etc. The organism picks !2 if it can, 

!c otherwise. 
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The “Fitness Beats Truth” Theorem 

 We can now state our main theorem, which applies in various contexts of 

evolutionary games: with infinite populations, finite populations with full selection, and 

(sufficiently) large finite populations with weak selection. 

Theorem 4: Over all possible fitness functions and a priori measures, the probability that 

the Fitness-only perceptual strategy strictly dominates the Truth strategy is at least 

(|1| − 3)/(|1| − 1), where |1| is the size of the perceptual space. As this size increases, 

this probability becomes arbitrarily close to 1: in the limit, Fitness-only will generically 

strictly dominate Truth, so driving the latter to extinction. 

Proof: For any given !, the Bayesian MAP estimate is a world point %/ (it is the %/	such 

that <(%/	|!) = max{	<(%|!)	|	% ∈ 5}). This point has fitness 3(%/); let !Å be that ! 

for which the corresponding 3(%/)	is maximized. Then this !Å, if available, is chosen by 

Truth and [(!Å), its expected fitness, is the payoff to Truth. 

 On the other hand, the fitness payoff to the Fitness-only strategy is, by definition, 

the maximum expected fitness [(!Ç)  at an optimal element !Ç	of X. Since this is a 

maximum over all fibers, we have [(!Å) ≤ [(!Ç).  

 As defined earlier, our evolutionary game has as payoffs, a: to Fitness-only when 

playing against Fitness-only; b: to Fitness-only when playing against Truth; c: to Truth 

when playing against Fitness-only; d: to Truth when playing against Truth. 

 We need to estimate the probability that  and  We assume that if both 

strategies are the same, then each has an even chance of picking its best territory first. Thus 

!a ≥c !!b ≥d.
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if, in any given play of the game, two competing strategies both take a particular territory 

as their most favored one, then each strategy has an even chance of picking that territory 

and then the other strategy picks its next-best choice of territory. 

 If Fitness-only meets Fitness-only, then each has an even chance of choosing its 

best territory, say !Ç; the second to choose then chooses its second best territory, say !ÇÉ. 

Since each player has an equal chance of being first, we have 

; = [[(!Ç) + [(!Ç
É)]/2. 

 If Truth meets Fitness-only, its choice will be !Å, as long as this value differs from 

!Ç. In this instance, we have ; > H. If, however, !Å = !Ç, Truth will choose, with equal 

probability, either !Å or !ÅÉ , where !ÅÉ 	is the second best of the optimal territories for Truth. 

Hence  

H = Ö
[(!Å),											if different best territories
[(!Ç) + [(!Å

É )

2
,	if same best territories

 

and since [(!Å) ≤ [(!Ç) and, for similar reasons, [(!ÅÉ ) ≤ [(!Ç
É) we get  

 What happens when Fitness-only meets Truth? If Fitness-only goes first, the 

payoff will be G = [(!Ç). The same is true if Truth goes first and the two best territories 

are different. If, however, the two best territories are the same, then the payoff to Fitness-

only is its second-best outcome: 

G = Ü
[(!Ç),	if different best territories
[(!Ç

É),							if same best territories 

 Finally, when Truth meets Truth, we have that 

!!a ≥c.
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I =
[[(!Å) + [(!Å

É )]

2
. 

So it is clear that G ≥ I, as long as the two best territories are different. If they are the same, 

this may or may not be true: it depends on the relative size of the average of d and [(!ÇÉ) 

(which, in this instance, also lies in between [(!ÅÉ ) and [(!Ç) = [(!Å)). 

 Now, a priori, there is no canonical relation between the functions f and g, both of 

which can be pretty much arbitrary (in fact, f need not even be continuous anywhere, and 

could have big jumps as well as bands of similar value separated from each other in W). 

Also, generically the maximum for each strategy will be unique and also the expected 

fitnesses for the different territories will all be distinct.  

 Thus, generically, [(!Å) and [(!ÅÉ ) will be different from and indeed strictly less 

than [(!Ç) (and also [(!ÅÉ ) < [(!Ç
É)). The only impediment to the domination of Fitness-

only can come from the situation where the best territories for both strategies are the same. 

Let X have size |1| = >. There are > ways the two strategies can output the same territory, 

out of the	>! [2! (> − 2)!⁄ ] ways of pairing territories. Thus, across all possibilities for f 

and g, the probability that randomly chosen fitness and a priori measures would result in 

choosing the same territory for both strategies, i.e., that [(!Å) = [(!Ç), will happen with 

a probability of  

>
>!
2! (> − 2)!à

=
2

> − 1
 

  Finally, the probability of the two fibers being different is the complement: 1 −

c

âR2
=

âRe

âR2
.    !
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Dynamic Fitness Functions  

 A possible objection to the applicability of this theorem is that it seems to assume 

a static fitness function, whereas realistic scenarios may involve changing, or even rapidly 

changing, fitness functions. However, a close scrutiny of the proof of the theorem reveals 

that at any moment, the fitness function at that time being the same for both strategies, the 

relative payoffs remain in the same generic relation as at any other moment. Hence the 

theorem also applies to dynamically changing fitness functions. 

 

Discussion 

 As we noted in the Introduction, it is standard in the literature to assume that more 

accurate percepts are fitter percepts and that, therefore, natural selection drives perception 

to increasing veridicality—i.e., to correspond increasingly to the “true” state of the 

objective world. This assumption informs the prevalent view that human percepts are, for 

the most part, veridical.   

 Our main message in this paper has been that, contrary to this prevalent view, 

attempting to estimate the “true” state of the objective world corresponding to a given 

sensory input confers no evolutionary benefit whatsoever. Specifically: If one assumes 

that perception involves inference to states of the objective world, then the FBT Theorem 

shows that a strategy that simply seeks to maximize expected-fitness payoff, with no 

attempt to estimate the “true” world state, does consistently better (in the precise sense 
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articulated in the statement of the FBT Theorem). In an evolutionary competition, this 

“fitness” strategy would drive the “truth” strategy to extinction. 

 In our view, the very idea of attempting to estimate the “true” state of the world is 

wrong-headed. Perceptual scientists generally take “objects,” “surfaces,” “light sources,” 

etc. to be part of the objective world that perceptual systems are trying to “recover.” But 

these entities are all still part of our own perceptual interface (Hoffman, Singh & Prakash, 

2015), though somewhat enhanced by precise measurement procedures—which 

themselves, of course, take place within the interface. For the purpose of the current 

analysis, it was important that we place the two strategies to be compared—“Truth” and 

“Fitness-only”—within a common framework involving Bayesian inference from the 

space of sensory states, X, to the objective world, W (recall Figure 4). This allowed us to 

place the two strategies on the same footing, so that they could be placed in direct 

competition against each other. However, the basic FBT result strongly supports the view 

that the very idea—and the ubiquitous assumption made in perceptual science—of 

perception as probabilistic inference to states of the objective world is misguided. 

Perception is indeed fruitfully modeled as probabilistic inference, but the inference is 

over a space of perceptual representations, not over a space of objective world states. 

 These ideas are part of larger theory, the Interface Theory of Perception, that we 

have described in detail elsewhere (Hoffman, 2009; 2019; Hoffman & Prakash, 2014; 

Hoffman & Singh, 2012; Hoffman, Singh, & Prakash, 2015; see also Koenderink, 2011; 

2013; 2014; von Uexküll, 1934). As noted earlier, the standard Bayesian framework for 

vision conflates the representation space (or the space of perceptual interpretations) 

relevant to a perceptual inference with states of the objective world. This is essentially 
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the mistaken assumption that the language of our perceptual representations is the correct 

language for describing objective reality—rather than simply a species-specific interface 

that has been shaped by natural selection. In our framework, the probabilistic inference 

that results in perceptual experience takes place in a space of perceptual representations, 

say, X1, that may have no homomorphic relation whatsoever to W (recall the 

Computational Evolutionary Perception framework summarized in Figure 1). 

 Representational spaces (such as X1 in Figure 1) evolve because they allow an 

organism to choose and act more effectively in the environment (i.e., in ways that result 

in higher expected-fitness payoffs)—and not because they somehow ‘resemble’ W (or are 

homomorphic to it). Properties such as 3D shape and color, for example, are 

representational formats that have been crafted by natural selection in order to support 

more effective interactions with the environment. They are part of our own species-

specific interface, and not of the objective world. In this sense, evolution can fashion 

perceptual systems that are ignorant of the objective world because natural selection 

depends only on fitness and not on seeing the “truth.”  

 These considerations strongly undermine the standard assumptions that seeing 

more veridically enhances fitness, and that therefore one can expect that human 

perception is largely veridical. As human observers, we are prone to imputing structure to 

the objective world that is properly part of our own perceptual experience. Our perceived 

world is three-dimensional and populated with objects of various shapes, colors, and 

motions, and so we tend to conclude that the objective world is as well. But if, as the 

Fitness-beats-Truth Theorem shows, evolutionary pressures do not push perception in the 
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direction of being increasingly reflective of objective reality, then such imputations have 

no logical basis whatsoever.7 

 On the narrower question of whether perceptual systems simply pick a single 

interpretation (a point estimate) based on the posterior distribution, or store and use the 

full posterior distribution, a version of this question remains applicable even once we 

drop the idea of making perceptual inferences back in the objective world (and the 

concomitant idea of maximizing “truth”). It is clear that using the full posterior 

distribution allows for greater power and flexibility, e.g. in tailoring the posterior 

distribution to different contexts and task demands that involve different utility functions. 

Indeed, empirical evidence suggests that human observers represent at least the mean and 

variance of posterior distributions, and use this information in a near-optimal manner in 

making perceptual and sensorimotor decisions (e.g. Trommershäuser, Maloney, & Landy, 

2003; Graf, Warren, & Maloney, 2005; Koerding & Wolpert, 2006). According to this 

approach, contexts such as the conscious visual perception of an object (where we 

typically see a single interpretation, rather than a distribution or “smear” of possible 

percepts) result from the application of specific utility functions that collapses the full 

posterior distribution to a single “best” interpretation (e.g. Maloney, 2002; Maloney & 

Mamassian, 2009). Formally treating such cases within the context of ITP would require 

incorporating aspects of Bayesian Decision Theory into our Computational Evolutionary 

Perception framework, something we plan to do in future work.	  
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Appendix: Calculations for the numerical example in Table 1 

In this appendix we perform the Bayesian and expected-fitness calculations using the data 

given in Table 1.  

To compute the Truth estimates, we first need the probability of each stimulation ℙ(!2) 

and ℙ(!c) . These can be computed by marginalizing over the priors in the world as 

follows:  

ℙ(!2) = D(!2|%2)n(%2) + p(!2|%c)n(%c) + p(!2|%e)n(%e) 

																														=
2

ã
.
2
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.
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å
+
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ã
.
e

å
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2e

cç
  

ℙ(!c) = D(!c|%2)n(%2) + p(!c|%c)n(%c) + p(!c|%e)n(%e) 
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By Bayes’ Theorem, the posterior probabilities of the world states, given !2, are   

D(%2|!2) = D*!2|%2),.
n(%2)

ℙ(!2)
=
1

4
.
1

7
/
13

28
=
1

13
 

D(%c|!2) = D*!2|%c),.
n(%c)

ℙ(!2)
=
3

4
.
3

7
/
13

28
=
9

13
 

D(%e|!2) = D*!2|%e),.
n(%e)

ℙ(!2)
=
1

4
.
3

7
/
13

28
=
3

13
 

Thus the maximum a posteriori, or Truth estimate for stimulus !2 is %c.  

 



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

43	

Posterior probabilities of the world states, given ?c, are: 

D(%2|!c) = D*!c|%2),.
n(%2)

ℙ(!c)
=
3

4
.
1

7
/
15

28
=
1

5
 

D(%c|!c) = D*!c|%c),.
n(2)

ℙ(!c)
=
1

4
.
3

7
/
15

28
=
1

5
 

D(%e|!c) = D*!c|%e),.
n(%e)

ℙ(!c)
=
3

4
.
3

7
/
15

28
=
3

5
 

Thus the maximum a posteriori, or Truth estimate for stimulus !c is %e.  

Finally, the expected-fitness values of the different sensory stimulations !2 and !c are, 

respectively:  

[(!2) = D(%2|!2)3(%2) + D(%c|!2)3(%c) + D(%e|!2)3(%e)

=
1

13
. 20 +

9

13
. 4 +

3

13
. 3 = 5; 

  																					[(!c) = D(%2|!c)3(%2) + D(%c|!c)3(%c) + D(%e|!c)3(%e) 

																																																			=
2

é
. 20 +

2

é
. 4 +

e

é
. 3 = 6.6.  

Thus !c has a larger expected fitness than !2.  
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Footnotes 

 1 From a purely mathematical point of view, the set of monotonic fitness functions 

is an extremely small subset of the set of all functions on a given domain. That is to say, 

there are “many more” non-monotonic functions than monotonic ones; hence a random 

sampling of fitness functions is much more likely to yield a non-monotonic one. 

 2	The	value	of	N	at	which	this	happens	depends	upon	the	payoff	matrix,	but	

can	be	arbitrarily	large	over	the	set	of	all	payoff	matrices	satisfying	; > H	and	G > I. 

	 3	In	this	case,	all	the	integral	signs	can	be	replaced	by	summations.	

	 4	An	example	is	a	closed	rectangle	in	some	k-dimensional	Euclidean	space,	

such	as	the	unit	interval	[0,	1]	in	one	dimension,	or	the	unit	square	in	two.	

	 5	In the general case, the perceptual map may have dispersion (or noise), and is 

mathematically expressed as a Markovian kernel D:5 ×r → [0,1].	That is, for every 

element w in W, the kernel p assigns a probability distribution on X (hence it assigns a 

probability value to each measurable subset of X). Because X is finite and all of its 

subsets are measurable, here the kernel may be viewed simply as assigning, for every 

element w in W, a probability value to each element of X.	

	 6	That	is,	ℙ(d%	|	!) = <(%|!)d%.	

7	See	also	the	Invention	of	Space-Time	Theorem	in	Hoffman,	Singh,	&	Prakash	

(2015).	
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Tables	

	

	

 

 

Likelihood of %ï 

given  !2 

#(!2|%ï) 

Likelihood of %ï 

given  !c 

#(!c|%ï) 

Prior 

#*%ï, 

Fitness 

3*%ï, 

%2 1/4 3/4 1/7 20 

%c 3/4 1/4 3/7 4 

%e 1/4 3/4 3/7 3 

 

 

Table 1: Likelihood functions, priors and fitness for our simple example where the Truth 

observer minimizes expected fitness, while Fitness-only observer maximizes it. 
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Figure 1.  The framework of Computational Evolutionary Perception in which perceptual 

inferences take place in a space of representations X1 that is not isomorphic or 

homomorphic to W.  The more complex representational format of X1 evolves because it 

permits a higher-capacity channel  for expected fitness, thereby allowing the 

organism to choose and act more effectively in the environment (i.e., in ways that result 

in higher expected-fitness payoffs). 

	

	 	

P1 :W → X1



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

47	

	

	

 

 

 

 

 

 

 

Figure 2.  A simple example showing two different perceptual mappings  

from world states, W = [1, 100] to sensory states X = {R, Y, G, B}. 

 

P :W → X
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Figure 3.  An example of a non-monotonic fitness function 3:5 →. Fitness is maximal 

for an intermediate value of the resource quantity and decreases in either direction. Given 

the ubiquitous need for organisms to main homoeostasis, one expects that such fitness 

functions are quite common.  
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Figure 4.  The framework within which we define the two resource strategies. We 

assume a fixed perceptual map  as well as a fixed fitness function 3:5 →. 

Given a choice of available territories sensed through the sensory states, say x1, x2,…, xn, 

the organism’s goal is to pick one of these, seeking to maximize its fitness payoff. Note 

that the "Fitness only" strategy employs Bayesian estimation while rejecting the 

interpretative assumptions usually associated with it. 

	  

P :W → X
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Figure 5.  The expected fitness of ! is the average, using the posterior probability, over 

the fiber DR2(!). 
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