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Our work intends to show that: (1) Quantum Neural Networks (QNN) can be mapped onto spin-
networks, with the consequence that the level of analysis of their operation can be carried out on
the side of Topological Quantum Field Theories (TQFT); (2) Deep Neural Networks (DNN) are a
subcase of QNN;, in the sense that they emerge as the semiclassical limit of QNN; (3) A number
of Machine Learning (ML) key-concepts can be rephrased by using the terminology of TQFT. Our
framework provides as well a working hypothesis for understanding the generalization behavior of
DNN, relating it to the topological features of the graphs structures involved.

I. INTRODUCTION

A paradoxical result in [1] according to which DNN memorize the training samples by brute force leaves unexplained
where the generalization capabilities of DNN come from. This “apparent” paradox, as it has been dubbed in [2], has
led to active discussions by many scholars; see for example [3-15]. In any case, in our vision, the overall discussion
has empirically proved how far the ML community is from building a principled model of DNN and, therefore,
understanding their generalization capabilities.

Quantum machine learning (QML) and quantum algorithms have been employed successfully to obtain significant
computational speedup of classical artificial intelligence methods [16-18]. The opposite approach, i.e. that of applying
classical ML techniques to deduce improved quantum algorithms, is also frequently used, e.g. [19]. Quantum Com-
puting (QC) has provided a very deep theoretical background to apply quantum algorithms to quantum computers,
and quantum approaches to quantum tasks have recently found profound applications [20-22]. In the present article
we are interested in developing a new theoretical background for ML that is based on mathematical notions derived
from quantum topology, and traditionally applied in theoretical physics. Specifically, we aim at using Topological
Quantum Field Theory (TQFT) to construct a topological notion of neural network, a Topological Quantum Neural
Network (TQNN), whose corresponding quantum algorithms provide an algebra/geometric background to explain the
issue of generalization in DNNs. We emphasize that such TQNN are more general than QNN models employing fixed
arrays of quantum gates, as in e.g. [23, 24]. Our TQNN structure, in practice, possibly provides a computational
advantage as a consequence of the fact that the projectors used in [25] naturally implement arbitrarily deep topological
neural networks. We will also show that the semi-classical limit of the objects hereby considered can be interpreted
as classical DNNs.

This pathway has been suggested by the analogy with physics. An experiment at the base of the quantum revolution
around the beginnings of the 20th century pointed out the existence of the photoelectric effect. As it is notorious,
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the effect has been explained by Albert Einstein resorting to a corpuscular description of the electromagnetic field,
namely to the concept of photons as carriers of “quanta” of light. But, actually, the interpretation of this very seminal
experiment clashed with a common perspective on quantum physics, widely spread nowadays even in the physics
community, and that relies on the naive assumption that quantum means microscopic and classical macroscopic. A
rather different pathway consists in moving from a quantum theory, with a tested semi-classical limit that corresponds
to the classical theory, and investigating the varieties of predictions that can then falsify the quantum theory. This
approach allows new predictive power and more robust experimental corroboration, and it is the approach we will be
following within this paper.

II. MOTIVATIONS AND THEORETICAL BACKGROUND

The main problem addressed in this article is that, despite the excellent performance in many different domains,
the source of the success of DNN and the reason for their being powerful ML models remain elusive. DNN are still
analytically opaque in the sense that they miss a principled model of their operation. This issue has a theoretical
relevance and, at the same time, it is extremely urgent from an applicative point of view as well. Indeed, if we wish to
trust any application making use of Deep Learning technology, we need to open the “black box” of these architectures.
In this sense, a solution to a problem of this kind is also going to have a social impact to the extent it will improve the
trustworthiness of Al systems. It has been empirically shown [1] that successful DNN can achieve zero training error or
very small error when trained on a completely random labeling of the true data. On the other side, the test error is not
better than random chance insofar as there is no correlation between the training labels and the test labels. However,
as the authors of the paper underline, in this case learning should have been impossible to the extent that the semantics
of the training samples has been completely corrupted by the randomization of the labels, with the consequence that
training should not converge or slow down substantially. Surprisingly, the training process was largely unaffected by
the transformation of the labels. This result seems to leave unexplained the generalization capabilities of DNN. How
to explain that DNN are actually able to achieve more than good generalization performances, even though the results
of learning a function that maps an input to an output based on example input-output pairs show that the training
set has been memorized by brute force?

Moreover, the results of [1] have posed a challenge to Computational Learning Theory (CoLT) as well. The
experimental results emphasize that the effective capacity of several successful DNN is large enough to shatter the
training data. In other words, the capacity of these models is in principle rich enough to memorize the training data
(with or without the use of regularizers). In particular, the classical measures of ML model expressivity (VC-dimension,
Rademacher complexity, etc.) seem to fail when explaining the capabilities of DNN. Specifically, they do not explain
the good generalization behavior achieved by DNN, which are typically over-parametrized models that often have
substantially less training data than model parameters [26]. As a matter of fact, it is usually understood that good
generalization is obtained when a ML model does not memorize the training data, but rather learns some underlying
rule associated with the data generation process, therefore being able to extrapolate that rule from the training data
to new unseen data. Overfitting and, even more, brute force memorization should exclude generalization by definition,
even as concerns human beings. For instance, the concepts of capacity ([27-32]), bias ([33, 34]), overfitting ([35, 36]),
and generalization ([37, 38]) have been widely explored in cognitive psychology as well.

This scenario has prompted us towards considering a different framework, the TQNN framework, for revising a
number of traditional ML concepts in the light of concepts coming from TQFT.

We start by considering QNN and pointing out certain fundamental perspectives that will also appear in our
topological TQNN, when considering the semi-classical limit. A recurrent visual image for QNN involves nodes of the
hidden layers that interconnect from each neighbor to another. In our setting, we will not consider fixed topologies
of this type, but rather consider 2-complexes bounding graphs, which are associated to input and output states.

As a starting point to move from, we consider a traditional feedforward architecture (Figure 1), as it could be used
in classifying individual hand written digits. It is inessential to the goal of this paper to define whether an architecture
of this kind will make use of backpropagation or whatever other optimization technique. We assign a set of squared
(25 + 1) x (2§ + 1) matrices, the dimension of which is specified by half-integer numbers j, and which depend on the
three Euler angles ¢, 6 and 1, to the links and to the nodes of a graph. The assignment of (25 + 1) x (25 + 1) matrices
to the links of the DNN is the first step required to introduce the concept of TQNN we are proposing. In the next
sections we will consider wide generalizations of this construction in terms of specific mathematical structures that
are well known in theoretical physics, namely TQFT.

The ML task will consist in classifying individual handwritten digits. Figure 1 illustrates the three-layer neural
network we could use for recognizing the individual digits. The input layer of the network will contain neurons
encoding the values of the input pixels. Our training data will consist of a sample of 28 x 28 pixel images of scanned
handwritten digits. Therefore, the input layer will contain 784 = 28 x 28 neurons. The input pixels are greyscale, with
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FIG. 1: A three-layer neural network for recognizing digits.

a value of 0.0 representing white, a value of 1.0 representing black, and the values in between representing gradually
darkening shades of grey. The second layer of the network is a hidden layer. The example illustrates a hidden layer
containing just n = 15 neurons. Finally, the output layer of the network will contain 10 neurons. We will number
the output neurons from 0 through 9, and figure out which neuron has the highest activation value. If, say, the first
neuron will have an output =1, then that will indicate that the network has classified the digit as 0.

The TQNN associated to the architecture described may be recovered by: i) Selecting, in the bulk of the DNN, a
graph with three-valent and four-valent vertices; ii) Associating to the edges interconnecting vertices (2j+1) x (25 +1)
matrices labelled by either j = 1/2 or j = 1; iii) Given any three-valent vertex, to the incoming or outgoing three
edges of which are assigned matrices (one with dimension labelled by j3 = 1 and two with dimension specified by
j1 = jo = 1/2), assigning to it a three-valent tensor saturating the indices of the matrices with the j; = j» = 1/2 and
j3 = 1 (Pauli matrices); iv) Finally, assigning to any vertex in which four 1/2-colored edges are incoming or outgoing
(three edges laying on the same layer and a fourth one external to it) a four-valent intertwiner tensor among the
1/2-colored matrices (contractions of two Pauli matrices). The next section discusses this construction in detail.

III. TOPOLOGICAL QUANTUM NEURAL NETWORKS

The mathematical structure used to define TQNN is that of TQFT. Formally, a TQFT is a functor from the category
of cobordisms, which we denote by Cob, to the category of vector spaces. See Figure 2 for a concise description of
cobordisms. Roughly speaking, what the definition of TQFT means, is that to each closed (n — 1)-manifold we
associate a vector space (of arbitrary dimension) on some fixed base field, usually C, and to each n-manifold M
between two (n — 1)-manifolds N7 and Na, we associate a linear map between the vector spaces corresponding to Ny
and Ny. What functoriality encodes in this context is the coherence of composition of manifolds (i.e. gluing manifolds
along their boundaries) with respect to composition of linear maps. With respect to Figure 2, the manifolds N; and
N5 in the top drawing of the figure are associated by a TQFT to vector spaces V; and Vs, while M becomes a linear
map between V; and V5. In the two drawings in the middle and bottom of Figure 2, the linear maps corresponding
to My and My are composed, through the vector space associated to IN;, which we call V;. In the case of the bottom
drawing, further, Vj is the tensor product of two vector spaces, corresponding to the two connected components of
Nj. By functoriality, we have that if f; and g; are the maps associated to M; and M, respectively, and f and g are
the maps associated to M; |J Ma and M |J M}, respectively, then it holds that fz o fi = f and g2 0 g1 = g. In other
words, the composition rule of Cob is translated into the composition of linear maps between vector spaces. We can,
in particular, think of any linear map f : N; — Ny as an arbitrary finite composition f = f,, 0 fru_10...f2 0 f1,
where each of these m maps is associated to some n-manifold My, subject only to constraint that the M} can be
successively glued together. Hence we can equally well think of each of the f;, as an equivalence class of smooth paths
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FIG. 2: Schematic representation of Cob. The top drawing shows a manifold M whose boundary consists of two manifolds Ny
and N2. While N7 and N are objects in Cob, the manifold M is a morphism. In the middle and bottom, two cobordisms are
glued along their common boundaries (where the orientation of N; in My is taken with opposite sign). This provides with a
composition rule for morphisms having same target and source objects.

through My, paths to which amplitudes will be assigned in the construction below.

The typical elementary example of TQFT is in dimension 2, i.e. one dimension lower than the TQFTs considered
in this article. We have a fixed vector space V for each copy of the circle (i.e. l-manifolds), and the vector space
VO is associated to 1-manifolds that consist of multiple copies of circles. Then, let N; consist of r circles and Ny
of s circles. To a surface connecting N; and N, we associate a linear map V" — V®s, It is a “folklore” result in
quantum topology that TQFTs in dimension 2 are classified by Frobenius algebras. Observe, in particular, that in
the previous scheme we have that to a closed manifold (i.e. without boundaries N7 and N3) is associated a linear
map between two copies of V®Y = C. This is nothing but a complex number which is an invariant of the manifold.

The class of TQFT relevant to this article come from quantum gravity, in the holonomy representation, where we
have that the boundary vector spaces are Hilbert spaces whose bases are given by cylindrical functions corresponding
to spin-networks. We define a TQNN to be a TQFT whose target vector spaces are tensor products of the Hilbert
space of cylindrical functions, taken with the (regularized) Ashtekar-Lewandowski metric.

In this setting, therefore, we can take an input spin-network associated to the dual cubulation of a boundary
manifold, and map this to another output spin-network. Associated to such a mapping there arises a scalar in the
ground field that is geometrically derived by “capping” the boundary components to obtain a closed manifold. This
scalar is interpreted as being a probability amplitude for a transition between two spin-networks. This is the outcome
of applying a TQNN between input and output states. In concrete, a TQNN returns, given two spin-networks
(Tin, Tout ), the transition amplitude from I';;, to T'yye, which in turn can be used for a binary classification problem,
e.g. a transition amplitude whose modulus square is higher than a predefined “confidence” number between 0 and 1
implies that the input is classified as the output.

A tight texture of analogies fetched by the equivalence between this categorical approach to quantum field theory
and deep machine learning specifies the theoretical perspective through which we progress. Both the Hilbert space
states and the probability amplitudes describing their relative transitions are crucial to the individuation of a TQNN
capable to include DNN as a specific sub-case. Following the recent literature [23], these states can be considered
as QNN machines, and their state transitions as implementing quantum computations. These are supported on 1-
complexes (graph I'), and are endowed with a functorial evolution supported on 2-complexes. This 2-complex evolution
is in turn a cobordism acting at an internal boundary (an n — 1-manifold) that is effectively a “hidden layer” of the
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FIG. 3: A functorial evolution among two spin-network states.

TQNN; however unlike in a QNN architecture with fixed layers, in a TQNN each “layer” can be further decomposed
into a (finite) sequence of intermediate evolution operators (n-manifolds glued by further cobordisms) and hence into
a further nested sequence of “hidden layers” as schematized in Figure 3. As we will see, this functorial evolution on
2-complexes is amendable to a training algorithm specifically adapted to our TQNN framework.

We consider, in the present article, the case of TQFT with a local non-abelian Lie group, which we assume for
the sake of simplicity to be SU(2). This specific choice, in particular, allows us to parallel the example of QNN
provided above. Then, squared (25 + 1) x (2§ + 1) matrices depending on the Euler angles turn out to constitute
the representations of the group elements U € SU(2). Tensors saturating, at the vertices, the matrix indices are here
specified by the intertwiners of SU(2). In our setting, these are initial and final states of the TQNN, rather than
the network itself. The functor, as an operator the action of which is supported on the disjoint boundary states,
corresponds to the classifier, i.e. the overall map f : N7 — Ny implemented by the TQNN as described above. The
scheme of computing the transition amplitude between initial and final states is obtained following an association
path [39]. This is schematically described as follows.

e We integrate either twice over each internal edge in the bulk !, or once over adjacent couple of group elements,
assigned to either internal edges or vertices:

U
/ — / dUs, / du,, ; (1)
SU(2) SU(2)

e We integrate over each couple of adjacent group element, assigned to either to a face or to an internal edge:

U

f o hef,

/ = / dUex X7 (Uy) ; (2)
sU(2)

e We sum over each face f* and associate the element

Qﬁ = oA xjf*< 11 Ue*); (3)

’

[ r exCof

1 For bulk we intend any 2-complex structure, without boundary. Therefore Z¢ [U~,] acts in a functorial way on a the boundary states,
which are 1-complexes, i.e. colored graphs I' composed by a collection of paths v and nodes where the paths intersect, to which are
assigned respectively holonomies and intertwiners.



e We drop, at each vertex, an integral fSU(Q) dU(e), which appears as redundant in (1).

The functor Z(U;) provides the transition operator between boundary states, and gives the algebraic counterpart
of cobordisms between boundary manifolds. It clearly depends on the boundary group elements and it is written as

ZC(Ul) :/ dU'u(e) / de H ’Cf*(Ue*a Uf)? (4)
SU(Q)Q(E—L)—V SU(Q)V—L f
where K¢, (Ues, Us) denotes the “face amplitude”

Ksi(Ues, Uy) Z A]f* ( H Us(eyUe t(e)) H X (Uy) . (5)

Jfx ex€df ex€df

Taking into account a 2-complex without boundary, (4) reduces to the partition function

Ze = / dUy(e / dU; A x
SU(2)2B-V © Su(2)v ZH 7

Jfs

(T s Ui ) TT 2 ). (6)

ex€df ex€Of

where V is the sum of the valences of the faces of C. Differently than in (4), the expression in (6) provides the
amplitudes of probability for the output of the transition among states. This coincides to the process of “capping”
the boundaries described before, and gives a partition function which is a topological invariant of manifolds. As
observed before, for the example of TQFT in dimension 2, this is an endomorphism of the ground field C.

We notice that the functor Z¢ derives its form from an integration on the possible geometries that determine
a transition between boundary states. More specifically, it is known (see for example [39] and references therein)
that the partition function defined above approximates the semi-classical limit of the Einstein-Hilbert action, and the
integration variables can be interpreted as living in the moduli space of (equivalent up to diffeomorphism) metrics over
the base manifold. Rovelli [39] compares this approximation to a “concrete implementation” of the Misner-Hawking
integral. In the setting of the present article, this is interpreted as the learning rule itself. A TQNN computes
transition amplitudes between states by obtaining a partition function determined by the topology of the system, and
infers this by integrating over the geometries of the system, therefore selecting a geometry that optimizes the output.

We are finally able to specify the training algorithm of the model as follows.

1. Initialize:
Associate, between boundary states that are supported on disjoint graphs
{Tin; Tout ; OC = Tout UT, }, the functorial evolution

Ze({Uisl e Cy{n}),

where {j;} denote a set of parameters to be fitted in the learning process.

2. Feedforward:

2a compose a functor Z¢({U;;1 € C},{ji}), which is supported on a 2-complex C, with a series of 2-complexes
interpolating among either the intermediate hidden layers graphs or the boundary states’ graphs. For P hidden
layers, labelled by p € P, we have the decomposition C =C; --- UC, UCp41. Therefore

Ze({Uislech, {n}) = (7)
Ze, ({Ulin ilin € Fin}) {jlin}) e Ze ({Ulout ilin € FOUt}v {5l011t}) )

where the dot denotes the integration over the group elements assigned to the interpolating graphs supporting
the hidden layer structures. This, in fact, encodes functoriality of Z, since it respects composition of intermediate
manifolds.



2b integrate over the group elements U assigned to the hidden layer graphs, so to trace them out:

20, (GD) - Zeu ({HY)
[, T4 26, ({00, (6D) Ze,((0). 1)) = Zees((G). ().

Il
—

co
g

This property is often referred to as a cobordism of the functorial structure.

3. Classify:

Introduce H; € SL(2,C), encoding the information on the set of parameters {7j;}; by the aforementioned com-
binatorics, associate to the 2-complex C the transition amplitude

Zo(H)) = / AU, (o) / avy ] K% (Ues. Up) (9)
SU(Q)Z(E—L)—V SU(Q)V—L I

where the heat kernel propagator, encoding the information about the parameter {3, } through the SU(2) coherent
group elements [40], acquires the expression

tt

K Uer Up) = 3 Ay, e300 75

jf*
V(T WU 2)asY) T v ), (10)
ex€df ex€df
{ts+} being a set of positive real numbers.
4. Estimate: -
Estimate the parameters {j;}, maximizing the probability derived from the amplitude Z¢, in a feedforward
approach.
5. Repeat:

Repeat the previous steps 1-4 for different choices of the boundaries 0C.

We conclude this section with few remarks about TQNN. First we notice that the definition of TQNN does not gen-
erally fix the geometry of the network, but it rather determines a “preferred” geometry to detect certain (equivalence
classes of) states by considering the highest transition amplitudes. Moreover, implicit in the use of the transition
amplitude used in loop quantum gravity again pointing at the recent discussion on mentioning LQG, we naturally
implement the superposition principle, as a sum (of sorts) over all possible histories between boundary states, i.e.
paths through the intervening n-manifold M. This might be compared to utilizing classical networks of arbitrary
layer widths and depths simultaneously, as different histories present in general a different number of single vertex
transitions that are composed to transition from one boundary state to another. Following this line of interpretation,
it is reasonable to expect that ideally a TQNN “implements all input/output equivalent DNNs in parallel” (cf [41])
and hence presents considerably higher computational performance with respect to a classical neural network.

Interestingly, while as noted above the most straightforward interpretation of QNN as spin-networks assumes that
the quantum machine corresponds to a given spin-network, in TQNN an appropriate functor determines the transition
between two spin-networks that are associated to single states. This functor represents, in effect, a superposition of
quantum machines implementing the chosen function f : N7 +— N» from the input to the output state. Replacing
single maps with functors representing appropriate equivalence classes of maps in this way is commonly referred to
as categorification in mathematics.
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FIG. 4: Superimposed to four different images are the associated graphs, endowed with assigned SU(2) irreducible representa-
tions. The bottom left panel encloses an image that corresponds exactly, i.e. with probability 1, to a ”L”.

IV. ASSOCIATING SPIN-NETWORKS TO IMAGES

A fundamental feature of the definition of TQNN is that input and output states are spin-networks and, more
generally, cylindrical functions of the Hilbert space in the holomorphic representation of quantum gravity. It is
therefore crucial to have well determined rules to associate spin-networks to the input data. We suppose to have a
pixeled image whose shades of gray vary in [0,1]. We let the nodes of our spin-network coincide with the centers of
the pixels. For each node N, we let j, denote the spin j representation of SU(2) where a is ten times the shade of
grey of the pixel whose center is N. Then, we consider the von Neumann neighbourhood of a node N, and for a node
N’ in the neighbourhood we join the two nodes by j,, = min{j,,j»}, where a and b are the associated (re-scaled)
shade of grey of the pixels of N and N’, respectively. We apply the Jones-Wenzl projector [42] to the representation
corresponding to j,p in order to symmetrize it, so to provide all the possible spin irreducible representations with
0<j<5.

To better elucidate the previous scheme we consider the specific situation of handwritten letters with 3 x 2 pixels
and the shades of gray, range in the interval [0, 1] in decimals, where 0 corresponds to white, while 1 corresponds
to black. By construction, the nodes of the spin-networks obtained will have 6 nodes, each centered in one of the



FIG. 5: The maximal graph, which encloses all the possible sub-graphs supporting the training samples’ cylindrical functions.

pixels. For example, four instances of the letter “L” and their corresponding spin-networks are given in Figure 4,
where we use rectangular boxes to denote the Jones-Wenzl projector applied to the edges (corresponding to SU(2)
representations) joining two nodes. In the case of the top left panel in Figure 4, proceeding counterclockwise from
the left top pixel, the encountered set of shades of grey is set to be {0.4,0.5,0.6,0.5,0,0}. A slightly different case is
represented in the right up panel of Figure 4 for which the string of numbers is {0.4,0.5,0.6,0.5,0.1,0.2}. The ideal
case, corresponding to the spin-network state that perfectly captures the letter L, with a probability |A|? = 1, is given
by {1.0,1.0,1.0,1.0,0.0,0.0} = L, and is represented on the left bottom panel of Figure 4. Finally, the left bottom
panel represents an undetermined case captured by the string of numbers {0.3,0.4,0.3,0.2,0.1,0.2}. We denote these
cases respectively as A, B, C and D. We shall notice that these are all nothing but “colored” sub-graphs that can be
recovered from a maximally connected graph, the one pictured in Figure 5, by removing fundamental representation
strands along the links.

V. THE SEMI-CLASSICAL LIMIT

We have so far considered spin-network basis states represented by cylindrical functionals of the holonomies, con-
tracted with the intertwiner invariant tensors. A different representation involves coherent spin-network states [43],
which is obtained as the gauge-invariant projection of the product over links of heat kernels. Namely

\I’F,Hab (hab) = / (H dga> HICtab(habagaHabgb_l) ) (11)
a ab

where a, b label the nodes of the maximal graph where the spin-networks live, pairs ab correspond to links, g, € SU(2)
are group elements at the nodes, hy, € SU(2) label group elements over the links, and H,;, are group elements of
SL(2,C), assigned to each link ab. Notice that elements of SL(2,C) can be expressed in terms of a positive real
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number 7, and two independent SU(2) group-element g, and g;bl, namely
H,, = gabenab(osﬂ)gb—al . (12)

The two SU(2) group elements cast uniquely in terms of an angle g?) and a unit vector identified by its inclination and
azimuth 7 = (sin 6 cos ¢, sin 0 sin ¢, cos §). The associated SU(2) group element reads

n = exp(—1po3/2) exp(—ibo2/2)), (13)
and the SU(2) group elements g recast g = nexp(zq@og/2). Thus we get
Hyp = nabeﬂz‘“’(‘mm)nl)}l . (14)

having introduced zqp = &qp + 11qp, With € = ¢~>ba — qgab. This finally allows to identify the set of parameters associated
to each link, namely (7ap, pa, Eab, Nap)- These parameters give weight vectors that determine the transition amplitudes
that the TQNN associates to input and output states. The learning process, therefore, consists of obtaining the weights
that produce the maximal transition amplitudes with respect to a ground truth. For example, in the case of spin-
networks associated to handwritten letters “L” given above, the weights have to maximise the transition amplitude
corresponding to the lower bottom panel of Figure 4.

The state in Eq. (11) can be expanded on the spin-network basis ¥r

Jabstar
\IIF Hab Z Z fJabaLa \I]FJQZ))La (hab) (15)
Jab la

with coefficients f;_, ., individuated by

Siavsa = (HA e Jer(Gavt Dtar piab (F] ) (Hu) : (16)

ab

In the large j,p limit, the coherent states Yr fr, (hep) undergo the expansion

(Jab Jab)

Ur H,, (ha Z (H Aj, e o ZE““‘“’) Up oy ®a(fiay) (Pab) (17)

Jab

where the coherent intertwiners ®,(7i,;) can be decomposed on the intertwiner space v,, by

nab Z o, nab vLa s (18)
with

(I)La, (ﬁab =V, <® |]ab7nab ) ) (19)

the variance of the Gaussian distribution per each link is inversely proportional to the diffusion time t,;, namely
oab = 1/(2t4p), and finally the parameters Jab over which the coherent state is peaked, which correspond to
the estimated parameters we refer to through the paper, are related to the 74, the real numbers entering the
parametrization of SL(2, C) group elements, at each link by A; = 7ap/tab-

The partition function of Section III is therefore changed in the semi-classical limit by the use of the approximations
in Eq.(17) and the corresponding transition amplitudes between a initial and final states ¥r ;. .., ¥r m,,, respectively,
are therefore computed according to the formula:

ab’?

7(jab_zab)2 .
~ E | I . 2 —%
AHab Hab = <\IJF7Hab|\I’F1j’77Ln> - Ajab € Tab € §abjab

Jab ab

X/dhab@F,jab@a(ﬁab)(hab)qll'",j/ab,vL/a(hab)

_ (jab_gab)Z 5 .
- ) 20 —18abJab R .
= E : H A]ab € ab € e 5‘1’a(nab)7v,/a 6]ab]/ab
ab

Jab

_ (jab _gab)z .
[T, e i ettoin ). (20)
ab
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Using the transition amplitudes above, between states in the semi-classical limit, we can apply the fundamental idea
of the algorithm of Section III in the semi-classical limit to obtain:

1. Initialize:
Associate spin-networks to images as in Section I'V. This is done in two steps:

la associate to each training sample a 1-complex (i.e. a graph), where each node corresponds to the center of
a pixel, and the edges connect pixels in the von Neumann neighbourhoods;

1b assign to each link of the 1-complex SU(2) irreducible representations, where the spin j representation label
is determined by the pixel colours.

2. Feedforward:

2a estimate the parameters entering the feedforward pattern through the functorial functional Z¢(h;), by
maximizing the internal product A between this latter and the QNN boundary states supported on dC. The
geoemtric supports for QNN boundary states are graphs resulting from the disjoint union of any I, on which
training samples are constructed, and 1-complexes supporting output states;

2b for hidden layer approaches: compute the functorial composition (cobordism properties) to take place
accordingly to Eq. (8), and consistently with the filtering process that is implemented by the selection of the
sub-graph structure at each hidden layer.

3. Classify:

3a introduce H; € SL(2,C), encoding the information on the set of parameters to be determined, namely
(ﬁab7 ﬁbaa fab, nab);

3b associate to each link of the 1-complex a set of parameters, the string (fiap, Tpa, Eabs Nab), to be fitted in the
learning process. This identifies the functional ¥r g

ab ;
3c compute the internal product to associate probability amplitudes to the training samples:
Al Har = (U0 H,, VT, 00 ) 5 (21)

the Wr g, denoting the functionals of the training samples, and \I/p, j .0 the functional associated to the image

to be recognized.

tn

4. Estimate:

Estimate, for each training sample, the parameters (@ap, Tpa, Eab, Mab), Maximizing the probability derived from
the amplitude Ay m,,-

These parameters individuate a rotation group element Eq. (13), which acting on a reference vector, e.g. the
identity element of the SU(2) group, individuates the weight vector.

5. Repeat:

Repeat the previous steps for different cylindrical functions, corresponding to different training samples, by
using the estimated parameters, and the corresponding weight vectors.
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Observe that the topological structure of the graph, and the related extended information that is encoded by its
links and intertwiners, are captured by the combinatorial summation of the a, b indices, and by the information stored
in the Kronecker delta on the projected coherent intertwiners at each node. On the other hand, metric properties
are encoded in the Gaussian weights at each link, capturing the relevant quantitative information concerning the
recognition of the specific digit. It is clear that the case in which, at the link 745, both the mean value j,, and its
dispersion (jap — jab)? /02, are vanishing, no information relative to that link appears anymore in the amplitude, and
the specific metric feature affects the topology of the graph, with the consequence that the graph will embed one
link less. Finally, we recognize as a remarkable feature of this approach that probability interference terms (while
computing |A|?) will be provided by the &, coefficients.

A. The perceptron in the semi-classical limit

We consider now our topological version of the notion of perceptron, and show that in the semi-classical limit we
obtain an object that resembles traditional perceptrons closely. The first step toward adapting TQNN to the setting
of perceptrons, is to define an algorithmic way to associate spin-networks to input vectors in R™, that constitute the
dataset. Let IV be a natural number which is large compared to the magnitudes of the entries of the vectors of the
dataset. Given a vector Z, we construct a spin network I'; associated to Z as follows. We introduce a node which is
labeled by 0, and for each i = 1,2,...,n we add a node, labeled by the index i of the corresponding entry of Z. As in
the case of Section IV, we colour the node labeled by 0 with the spin representation j, while each node ¢ is coloured
by [z;], the closest integer rounding x;. Then, for each ¢ we inroduce an edge connecting 0 and 4, which is labeled
by a spin jo; = N + [x;] representation. Finally, we symmetrize the edges by applying the Jones-Wenzl projector,
indicated diagrammatically by placing a black box on the connecting edges. Observe that we do not introduce, in this
context, links between nodes i and j with 4,7 # 0. Now, the weights of the perceptron are vectors w € R™ similarly
to the inputs Z of the dataset. We follow the same procedure above to introduce a spin-network I'; of weights.

Since we have chosen N much larger than the actual range of the data entries Z (i.e. the hypercube [—M, M]™
where M is the maximum magnitude that the entries of the dataset reach, has M << N), it follows that we can
adopt the large spin jp; limit, for which transition amplitudes are computed as

_ (oi—70:)?

Ur, 7j‘LIML'n,> = H Ajm‘ € 2h e foidor, (22)
%

AHiHOiﬂD = <\I}Fi7H0i

The analogy with classical perceptrons is as follows. A perceptron trains a function f whose weight vector w determines
the output according to the rule f(Z) = 1,0 depending on whether @ - T > 6 or not, respectively, for some threshold
0, and where - indicates the inner product of R™. In fact, usually a bias appears in the perceptron formulas, but
this can be encoded among the weights as well, so we will omit referring to it. In our topological version above, the
amplitude AHi Ho:w is obtained by the inner product of spin-network states associated to inputs z and weights w. The
transition amplitude A[7. g, » is a complex number whose modulus square is between 0 and 1, so that by applying a
Heaviside step function H, centered at some threshold value 6, to |AH1- H%u—,|2 we obtain a TQNN implementation of
the concept of perceptron. Training a topological perceptron would account to optimizing weights w, and SL(2,C)
elements Hy; with respect to a predetermined target.

A similar reasoning applied to feedforward neural networks (i.e. multilayer perceptrons) can be implemented as
well, by using the fact that TQFTs are defined via functorial constructions that allow us to compose an arbitrary
number of computational units as above. Note that in this setting the “semi-classical” nature of QNNs with fixed
layers and fixed connections, and hence classical constraints on entanglement between qubits, also becomes clear: such
systems effectively choose only particular paths through the input/output equivalent TQNN to implement, enforcing
this choice architecturally. We see, therefore, that TQNNs are versatile objects that can be trained and utilized for
classification problems in different ways. Moreover, through the notion of semi-classical limit, they provide a way of
interpreting artificial neural networks in the context of TQNN theory.

VI. EXPERIMENTS ON HANDWRITTEN LETTER RECOGNITION

We consider now the theory introduced in this article, applied to a concrete example. It is worth mentioning that
we take into account hidden layers, i.e. 2b in the “Feedforward” step of the algorithm of Section V. This consists
of interpolating among intermediate states, on which a complete summation is taken into account through Eq. (8),
and which are supported only on a restricted set of sub-graphs. The functoriality of TQNN in this sense is here
fundamental, as Eq. (8) encodes precisely the composition property of cobordisms, preserved by topological quantum
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FIG. 6: A specific graph, representing a the number 0, within the case employing 28 x 28 pixels.

field theories. We can imagine the hidden layers to act as filtering specific patterns over others. Indeed, what the
hidden layers do is to impose a selection over the intermediate graphs 9C,,, and hence the 2-complexes that interpolate
among these latter ones. Internal summation over the irreducible representations of SU(2), namely variation of the
metric properties of the QNN states, then individuates all the possible sub-graphs contained in dC,, i.e. corresponds
to a variation of the topological features of the 1- and 2-complex structures.

Applying the definition of cobordisms and functoriality implicit in the definition of TQNN as a type of TQFT,
implementing different layers as described above simply coincides with computing transition amplitudes through
middle steps in the computation, as prescribed by Eq. (7).

The experiment utilizes the MNIST database (Figure 7) which is the standard computer vision benchmark for hand-
written digit recognition. The data set contain the grey-scale image of hand-written digit. The fact that all images in
the dataset have identical dimensions, which is 28 x 28 pixels, see Figure 8, implies that the knowledge representation
graph can be constructed from any image in the dataset. After the translation of knowledge representation graph,
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FIG. 7: Several samples of the number 0, extracted from the MNIST data base, to be used during the training process.

10

FIG. 8: The maximal graph, which encloses all the possible sub-graphs supporting the training samples’ cylindrical functions
for the case 28 x 28 pixels.

the parameters for each digit class are obtained using class prototyping. This consists of averaging the spin colours
appearing in the training set of MNIST, in order to determine a representative spin-network whose transition with
respect to input data provides the classification probability (hence the label). The topological forms of spin-network are
encoded in parameters which determine the likelihood of spin-networks state as a class. Alternatively, any optimization
technique like gradient descent can be applied to learning the class prototype of specific set of spin-networks state.

The transition amplitudes are computed in the semi-classical limit using the formulas described in Section V, through
the implementation of the pseudo-algorithm thereby provided. In Figure 9 we report the mean values of the standard
deviations of the j-spin colourings corresponding to irreducible representations associated to the spin-networks.

An implementation of TQNN without employing the semi-classical limit will appear elsewhere. Such an algorithm
utilizes the machinery of Section III in its generality. We limit ourselves to mentioning that transition amplitudes, in
the general setting, use the definition of Jones-Wenzl projector at the links of spin-networks, along with the projector
of Noui and Perez ([25]) to regularize the inner products.
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FIG. 9: Marginalised plots for the estimated mean values and standard deviation of the irreducible representations associated
to the links of the spin-networks states.

VII. A DICTIONARY FOR QUANTUM NEURAL NETWORKS

As we have already mentioned, the novelty of our model consists in using the richer structures of graph-supported
spin-network states to represent training and test samples. As a matter of fact, as far as we know, it is the first time
that graph structures are taken into account, together with their evolution supported on 2-complexes. Instead, within
the traditional approach, nodes that are located at each boundary and hidden layer, are taken to evolve along graphs
(1-complexes).

Now we are ready to reformulate notions found in DNN theory in the language of TQNN. We restrict our illustration
to the supervised learning scenario consisting, as it is well known, in learning a (typically unknown) function g : X — Y
that maps a (typically large, e.g. all possible images of handwritten characters) input set X to a (typically much
smaller, e.g. names of characters) output set Y, based on a training set X’ C X and hence an explicitly represented
function ¢’ : X’ — Y specifying example input-output pairs. If f : X — Y is the (presumably random) function
implemented by the network before training, we can represent the learning algorithm as an operation £ : (f,¢') — ¢
on the initial function f given the training function ¢’. In particular, we follow the statistical learning framework of
supervised learning delineated in [44]. Let us recall first, some classical definitions for DNN; see [44].

e Sample complexity:
It represents the number of training-samples (i.e. Card(X')) that a learning algorithm needs in order to learn
successfully a family of target functions.

e Model capacity:
It is the ability of the model to fit a wide variety of functions; in particular, it specifies the class of functions $
(the hypothesis class) from which the learning algorithm £ can choose the specific function b.

e Overfitting:
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A model is overfitting when the gap between training error and test error is too large; this phenomenon occurs
when the model learns the training function ¢’ but £ incorrectly maps (f, g’) — h # g, i.e. the trained network
generalizes to the wrong function h and fails to predict future observations (i.e. additional sample from X)
reliably. The training function ¢’ has been merely “memorized” to the extent that A is random on X outside of
the training sample X'.

e Underfitting:
A model is underfitting when it is not able to achieve a sufficiently low error on the training function g¢’; this
phenomenon occurs when the model does not adequately capture the underlying structure of the training data
set and, therefore, may also fail to predict future observations reliably.

e Bias:
It is the restriction of the learning system towards choosing a classifier or predictor h from a specific class of
functions $ (the hypothesis class).

e Empirical Risk Minimization (ERM):
It consists in minimizing the error on the set of training data (the “empirical” risk), with the hope that the
training data is enough representative of the real distribution (the “true” risk).

e Generalization:
It is conceived as the ability of the learner to find a predictor, i.e. a map X’ — X, which is able to enlarge
successfully its own predictions from the training samples to the test or unseen samples.

These notions can be translated into the TQNN dictionary as follows:

e Sample complexity:

It is a measure of the Hilbert-space of the entire spin-network state that is supported on a specific graph T'.
It is then dependent on the connectivity of the graph (nodes and links of each graph, i.e. the multiplicity of
connectivity that characterizes the graph I') and on the dimensionality of the Hilbert spaces connected to each
link and node. In this sense complexity, once extended to the different classes of graphs corresponding to the
training set, provides a measure of the entropy of the set. Therefore, in the TQNN framework, the notion of
“complexity” has a wider meaning than its counterpart in DNN, for which the sample complexity is nothing
but the size of the training set. This is summarized in the expression for the dimension of the Hilbert space Hr
of the (whole) spin-network supported on I', namely

dim[Hr] = @}, @, @icon dim[H,;,].

This directly encodes both the size of the maximal graph where the input/output states live, as well as the
algebro/analytical structure used in the TQFT from which the corresponding TQNN arises, as encoded by the
dimensionality of the Hilbert spaces H;, for instance;

e Model capacity:
It is quantified in terms of the interconnectivity of the graph I'. It depends on the topological structure of
the graphic support I' of the spin-network states, and neither on the dimensionality of the Hilbert space of the
irreducible representations nor on the intertwiner quantum numbers, respectively assigned to each link and node
of I'; in other words, it depends on the total valence V of I', defined in terms of the valences v,, of each node of
I" through the expression
V= Z Up
n

e Overfitting:

As pointed out in Section III, in the semi-classical limit, the integrals that allow us to compute the transition
amplitudes that characterize a TQFT are interpreted as a “sum over all the geometries” of the ground topological
manifold, where the integrand is some approximation of the Einstein-Hilbert action. During the learning process,
then a TQNN learns how to select certain geometries with respect certain others in order to maximise certain
transition amplitudes corresponding to “a more suitable” classification. The information available to make this
selection during the learning process is that given by the connectivity of the input graphs/spin-networks and
their given correlation ¢’ with the label set Y. If ¢’ is insufficiently representative of the target function g, the
TQNN may only partially capture the topological structure of the full input set X and therefore be unlikely to
classify correctly spin-network states that are not part of, or are significant dissimilar from those contained in,
the training set X';
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e Underfitting:
It represents the converse of the overfitting scenario. The geometries that have been selected in the learning
process do not correspond to the graphs I" at the starting point. Less information channels (links) are present, and
lower dimensionality of the information channels (dimensions of the Hilbert space associated to each holonomy)
as well. As a consequence, the QNN cannot fit the training set and may therefore also fail to predict future
observations reliably;

e Bias:
It amounts to the predisposition of the spin-network to account for a specific set of data; it depends on the
topological structure of the spin-network states, encoded in the connectivity properties of input I'’s and on the
specific realization of the TQNN quantum state, i.e. on the weight of the quantum state on the spin-networks
basis elements of the Hilbert space.

e Empirical Risk Minimization (ERM):
It is the variance of the Gaussian distribution of the irreducible representations assigned to the holonomies on
the links in the semi-classical limit, i.e.

(i — 71)?
ERM := 3" LI
p 2L

with L equal to the total number of links.

e Generalization:

It is the behavior of the system in response to test or unseen data analogous to a functor (amplitude) either from
a boundary spin-network to another boundary spin-network, or from a boundary spin-network to a complex
number. This is determined by the geometries that have been selected as the most representative of a certain
training sample during the learning process. This is in practice captured by the parameters that give higher
relevance, in the integral computing the transition amplitudes in a TQNN, to certain boundary transitions,
while suppress others. These parameters are determined by (i) connectivity of 1- and 2-complexes (nodes and
links, vertices and edges respectively), (ii) linking and knotting (e.g. for loops in a different Hilbert space repre-
sentation), and (iii) states’ sum (as a global topological charge, invariant under refinement of the triangulation,
i.e. invariant under refinement of the data/group elements/intertwiners assigned to the links and the nodes).
How the parameters determine the corresponding amplitudes is clear, for the TQNN used in practice in this
article, from the formula for the partition function of the model:

Ze(U)) = / AU (e / AUy [ Kpe(Uen, Uy) (23)
SU(2)xE-L)-V Su(2)v-L I

where the “face amplitude” casts

KpeWer,Up) = 37 Ay (T ) TT W) (24)

Jf* excof ex€0f

Finally, from the definitions of the present article, we can provide the meaning of Learner’s input and output in
the context of TQNN.

e Learner’s input:
i) The domain set X: It corresponds to links ! and nodes n, and attached holonomies U; and invariant tensors
L, respectively along the links and at the nodes: it is concisely denoted as a state of the Hilbert space of the
theory:

U Gy fend A = e (Un, ) = U5 i}, {en})s

ii) The label set Y: It is a set of topological charges and quantum numbers, with which the 2-complex is
endowed; for instance, recalling the group-isomorphism 73(S3), for the mapping individuated by the homotopy
group m3(S3) = Z the winding number w is defined as the integral over the SU(2) group element

=,
w=——-" du;
247’1’2 SU(2)

iii) The training data S: It is the union of the (initial) boundary colored graphs together with the topological
invariants associated to them through the QNN functorial action.
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e Learner’s output:
It is a prediction rule, i.e. the QNN functor that identifies the topological charges of the boundary states
(training/test samples) and thus implements the classifier; for I' supporting a disjoint boundary state, the
classifier is captured by the probability amplitude that results from the internal product

A= @ {5} {en}l 1 2c.0c=r: {5i}, {tn}) 5

VIII. THE NOTION OF GENERALIZATION IN DNN AND TQNN

Let us now consider in detail the issue of generalization in TQNN, and a consequent attempt at answering the
problem raised in [1] for DNN.

Firstly, let us describe the notion of randomization of the labels in the training set, in the context of TQNN.
Specifically, this is when labels are generated with an approximately flat spectrum on the initial spin-network states.
This corresponds to the selection of one element of the Hilbert space, with random assignment of labels, which
therefore represent a natural definition of randomizing the labels in the training set.

We argue that the problem formulated in [1] finds a natural explanation to the extent that we enlarge DNN into the
richer structure of TQNN (supported on graphs and endowed with topological “storage” capabilities) and understand
the traditional DNN architectures as the semi-classical limit of the TQNN counterparts. In brief, a classical DNN has
only the function ¢’ to learn; it has no access to the “intrinsic” structure of the training examples. TQNN, however,
are sensitive to such intrinsic structure in the form of topological invariants. Since we are addressing the generalization
problem in the DNN framework from the TQNN side, we shall consider the coherent group elements

|7, j) == D7 (Uz) D (e),

with e unit element of the group, 7 direction on S* that generically individuates U € SU(2) and D’ (e) = |j, +25).

This step allows to recover the DNN structure as the semiclassical limit of TQNN. Output 1-complexes (quantum
spin-networks) and 2-complexes functorial structures in order to match the classical DNN structures must be evaluated
on boundary coherent group elements. Furthermore, by recognizing that (10) retains an heat kernel for the SU(2)
group elements, the coherent group elements can be used as a basis for the functorial structure that defines the formula

Ze(U) = | Wy [ vy T Kpen V).
SU(2)2(E—L)—V SU(Q)V—L f

The same must happen for (integrated) bulk coherent group elements. The structure of TQNN naturally encodes
topological charges through the functorial quantum dynamics ensured by the 2-complexes, which create either vertices
and then novel functions of intertwiner quantum numbers, or other topological charges encoded in the knotting and
linking of the edges in the bulk of the 2-complex.

Specifically, we assume that the size of the training data is sufficient to select or, better, to learn specific paths
in the boundary graph and bulk 2-complex within the most general available TQNN architecture. These paths are
characterized by three different types of associated non-perturbative topological charges. These latter in turn provide
the sub-structures that are involved in the generalization process, as a subset supported on general 2-complexes. The
topological charges that are switched on over the learning process, together with the corresponding metric properties,
implement effectively the generalization process. In this sense, our approach is expected to provide a solution to the
problem as raised by Zhang et al, 2016. In particular:

e The randomization of the labels of a TQNN state will not induce overfitting, as a consequence of the encoding
of information achieved by the QNN through the topological invariants. The quantum nature of the QNN will
induce fluctuations around values of the parameters to be estimated, in a way that is compatible with the zero
assumption for these parameters. This assumption would instead change the topology of the graph, and thus
affect the encoding of information by the QNN. As a consequence, the disappearance of topological features of
the graphs will avoid the memorization by brute force of the training samples.

e However, a DNN architecture will be trapped into an overfitting regime till memorizing the training examples
by brute force, since by definition of DNN the training error vanishes — the variance for the j scale as 1/ \/j: . In
other words, corresponding DNN to a set of spin-network evaluated into coherent group elements, the associated
training error is zero.



19

Contributions to the topological invariants can be recognized to be of several different types, including the ones
associated to the connectivity of the graphs, the linking and the knotting (e.g. in the loops decomposition of the
TQNN boundary and intermediate spin-network states) and the states’ sum invariants. The first two classes will be
local in the experimental implementation of the TQNN, while the latter represents a global charge, the analytical ex-
pansion of which in the deformation parameter might entail an infinite numbers of momentum expansion of the charge.

Notice that generic boundary states are characterized by two classes of parameters, which we dub as topolog-
ical and metric parameters: As reminded above, the former ones are captured either by the topology of the graph,
or by the topological invariant (linking and knotting) quantum numbers, which can be expressed in terms of
quantum group representations and are characterized by the deformation parameter of the quantum group, while
the latter ones are captured by the spin/label of the representation itself. Whenever not enough information about
the topology is specified by the training data, any TQNN 2-complex with enough topological internal structure
to account for the classification task will be selected. In other words, if the training data prescribe an effective
shrinking of the “measure” of edges and links to zero, any topological feature of the graph, such as the valency of
a node, or the knotting or linking of an edge, will cease to be. Metric parameters instead are individuated by the
Gaussian weights associated to the coherent group elements assigned to the TQNN states, and recovered by fit on
the spin representation set that is assigned to each training state. In this sense, since the parameters fit is achieved
considering the whole amplitude A, the resulting topology qualifies as a derivative-free feedforward architecture in
which a composition of intermediate evolution operators among the hidden layers does not need to backpropagate
the information.

IX. A NEW WORKING HYPOTHESIS

As a consequence of the previous discussions, we propose as working hypothesis for this proposal that the learning
process of DNN shall be interpreted within an extended framework, which follows the very same axioms of quantum
mechanics and quantum topology, through the formulation of TQFT. In other words, we see a TQNN as a quantization
of a DNN whose i — 0 limit recovers the classical case. In the learning process of a TQNN, the substantial feature that
a TQNN learns, is the selection of relevant geometries in the partition function that determines transition amplitudes
utilized to classify. The main idea that constitutes the backbone of the present framework is that DNN should be
addressed at the TQNN level. Training examples or tests samples will be captured by the spin representations of
the TQNN quantum state, which are superpositions of the boundary Hilbert space elements. Moreover, we point
out that TQNN implicitly carry a quantum computation perspective, since the boundary states in general are mixed
as linear combinations of pure spin-network basis elements. Transition amplitudes will return the probability of a
state as being in a certain spin-network basis state. The generic boundary states are characterized by two classes of
parameters, which we dub topological and metric parameters: The former ones are captured by the topology of the
graph, hence by the topological invariant (linking and knotting) quantum numbers, while the latter ones are captured
by the spin of the representation itself. Pertaining to the topological parameters, information provided by the training
samples, together with the definition of training error in terms of the internal product of boundary quantum states,
substantially determines the structure of the bulk, and therefore the functor that determines transition amplitudes, in
the learning process. We argue that the topological parameters are enough to learn the classifier, namely the TQNN
2-complex that provides the functorial structure of the TQNN, playing a similar role to the frequency threshold
in the photoelectric effect: Whenever not enough information about the topology is specified by the training data,
any TQNN 2-complex with enough topological internal structure will be selected. This might be considered as a
TQNN counterpart of a similar phenomenon in the theory of TQFT, and its relations to Chern-Simons theory and
the Jones polynomial. In fact, celebrated results of Witten [45] has shown that the partition function associated
to the action corresponding to Chern-Simons theory is independent of the metric, although the action itself is not.
We have incurred in a similar situation, and we argue that the notion of generalization in TQNN theory and, as a
limit, in DNN theory, lies precisely here. Although the partition functions that are used to determine the transition
amplitudes are topological (hence the name TQNN), what is learnt during the learning process is what geometries
to associate to given classified patterns. Metric parameters are individuated by the Gaussian weights associated to
the coherent group elements assigned to the TQNN states. The size of the training set then will represent the analog
of the intensity of the electromagnetic field in the photoelectric effect, namely the number of photons impinging the
plates of the condenser: If the size of the training set is not sufficient, i.e. it does not include enough group elements,
or the training set is too noisy, links and nodes will not be sufficient to learn any classifier. Lastly, the “richness”
or “energy” of the set of labels allows to “switch on” the links, and thus the nodes and the topological linking and
knotting invariants, only for non-trivial (non-zero) values of the spin.
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X. CONCLUSIONS

Moving from the perspective of TQFT, we have defined the concept of “Topological Quantum Neural Network” and
shown that that classical DNN can be seen as a subcase of TQNN, and emerge in a coherent group theoretical sense as
a limit of TQNN. This allowed us to establish a dictionary translating a number of ML key-concepts in the terminology
of TQFT. More importantly, we have proposed a framework that provides a working hypothesis for understanding
the generalization behavior of DNN.

The novelty of our approach, particularly when compared to recent studies in the literature ([23], [24]), stands in
taking into account fully, for the first time, the truly topological structure of graphs and 2-complexes on which the
TQNN states are supported. Indeed, ours is not only a pictorial representation, in terms of graphs, of product states
belonging to the total Hilbert space (Fock space) of the theory. Instead, what we have developed is a scheme that
allows to associate ML concepts to topologically invariant features of the graphs (inter-connectivity of edges, linking
and knotting numbers, topological invariants on 2-complexes) and 2-complexes involved in the TQNN construction.

A number of further lines of research could be pursued starting from our approach:

1. Providing empirical results concerning the working hypothesis previously described so to corroborate the claim
that the notion of generalization introduced in this article is consistent;

2. Defining new complexity measures more appropriate to the framework we described and adequate to explain the
behavior of over-parametrized models such as DNN. It would also be of interest to pursue deeper experimentation
with variety of benchmark data sets, so to relate complexity measures to concrete examples;

3. Introducing the notion of “time” into the architecture by modelling phenomena of the cortical plasticity such as
firing rate or spike timing, see [46]. In particular, this perspective implies the necessity of using TQFT that have
one extra dimension with respect to the concrete ones that have been used in this article. The basic theory does
not change, in that the notion of TQNN does not require fixing a specific dimension in the cobordism category,
but the corresponding algebro/analytical machinery certainly becomes heavier.
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Appendix A: Topological Quantum Field Theory

We provide in this appendix a deeper introduction to Topological Quantum Field Theory (TQFT), spin-network
(boundary) states and (bulk) 2-complexes functorial evolution of boundary states.

1. Classical phase-space and spin-network states

The theory is the principal SU(2)-bundle over a D-dimensional base manifold M. The SU(2)-connection A realizes
the parallel transport among infinitesimally closed fibers of the principal bundle. The parallel transport along a finite
path v connecting any two points of M is individuated by

Hy[A]=Pel?, (A1)

which denotes the path ordered exponential P of the integrated flux of A along ~. The holonomy then provides a
group element g € SU(2). The trace of the holonomy along a closed path (a loop a) can be expanded, taking into
account a squared loop of infinitesimal edge €, as

lim W,[A] =1 — EF[A] +..., (A2)

llal|—0
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where ||a|| denotes the measure of the loop «, and F[A] = dA + A A A is the field strength, or curvature, of the
connection A. The connection A is both a I-form on M — indeed, its curvature is a 2-form over M, since the differ-
ential d is one-form — and an element of the su(2) algebra. Thus, it admits the decomposition over the generators 7%,
with a = 1, 2, 3 indices in the adjoint representation of the algebra. Consequently, the connection A and its curvature
F[A] acquire the dependence on the internal indices, respectively A = A%T® and F%[A] = dA® + ¢?¢ AP A A°] the
Levi-Civita symbol €% providing the structure constants of SU(2) and the Einstein convention of summing repeated
indices is intended.

A TQFT can be introduced considering the topological action associated to the Lagrangian density function
L[A] = B® A F*[A] = Tr[B AF[A]], (A3)

where the B field denotes a su(2) algebra valued D-form, which is the canonically conjugated momentum to the
connection A, and the trace over the generators of the algebra is normalized to the identity and yields Tr[r27P] = §2P.
The phase-space variables A and B can be then paired in a symplectic construction, imposing the Poisson brackets

{AZ(iUl)aB?(M)} =4, 85 6(w1,72) (A4)

with i = 1,..., D space indices over the dimensions of M.
Holonomies realize the smearing of the configuration space variables, i.e. the connections A, along the paths ~.

Similarly, the smearing of the frame fields B can be implemented by substituting their fluxes calculated through the
surfaces ¥ of co-dimension 1 that crosses the paths « at least in one point, namely

Bg:/zB-n, (A5)

where n is the normal to the surface ¥ and the dot denotes contraction of indices. For example, since the dimension
of the path ~ is 1, its co-dimension 1 surface in a 3D ambient space will be a 2D surface.

The theory we just introduced retains what is called a gauge symmetry, namely a symmetry under internal transfor-
mations, which individuates an equivalence class that describes an observer. These are instantiated by transformations
involving generic group elements g € SU(2), i.e.

A— A, =g Ag+g g, (A6)
and
B— B, =g 'Byg. (AT)

It is trivial to check that the action (A3) is invariant under the joined action of (A6)-(A7). The infinitesimal expansion
of finite transformation rules (A6)-(A7) can be cast at the su(2) algebraic level, through the infinitesimal expansion

of a group element around the identity, i.e. g ~ 1l + a®7® 4 .... This individuates an infinitesimal transformation
B =[B,q], 0 A =Dy, (A8)
where the commutators [, ] denote the adjoint action of the algebra. The generators of the algebra appear in

B = B%* and a = a®7%, while D4 denotes the covariant SU(2) derivative Dy := d + A.

Another symmetry, which is relevant for the definition of TQFT, is the shift symmetry. This is actually
ensuring the theory under consideration to be topological, as it is straightforward to recognize by looking at

B— B+6,B, 0nB="Dan, (A9)
and
A—-A+6,A, 0pA=0, (A10)

where 7 is any arbitrary infinitesimal 0-form (a function). Under the infinitesimal transformations (A9)-(A10), the
variation of the action of the theory S[A] = [, L[A], namely

5,S[A, B] = S[A+ 6,A, B+ 6,B] — S[A, B], (A11)
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vanishes, due to the Bianchi identity D4 F[A] = 0. This latter identity appears in the variation of the action due to
an integration by part:

/ Tr[(B + 6,B) AN F[A+6,A] = / Tr[(B +Dan) A F[A] =
M

M
/ Tr[B A F[A]] — / Tr[B 4+ MDA F[A] = / Tr[B A F[A]]. (A12)
M M M
This symmetry is often referred to as a “gauge symmetry” of the BF' theory, which individuates a class of equivalence
among physical solutions that differ by this transformation.
On the other hand, the equation of motions are specified by the variation of the action with respect to the phase-
space fields:

DuB =0, F[A] =0. (A13)

Solutions are then "flat”, or with zero curvature, i.e. F[A] = 0, while the frame fields satisfy the Gaufl constraint
DB = 0, which generates the gauge transformations. Locally, by the topological shift symmetry, any frame field B
that satisfies the Gaul constraint can be recast as Dan, for some 7. This is true as locally closed forms are exact,
and continue to satisfy the Gaufl constraint. This implies that locally the solutions of the equations of motion belong
to the same equivalence class, modulo gauge transformations and shift symmetry transformations. Since these can be
mapped into vanishing configurations, this argument finally shows that there are no propagating degrees of freedom
in BF theories, namely that these theories are topological.

2. Graph-kinematics

As a last step before proceeding to the definition of the 1- and 2-complexes, we introduce the irreducible representations
of the group, the so-called “spin” numbers, and the inter-twiner numbers, depending on the SU(2) recoupling theory.
At this purpose, we remind that in this case holonomies over a path « are group elements of SU(2), and thus undergo
the transformations

Ho[A] = 970 Hy[Algiy) (A14)

where g4,y and gy(,) are group elements assigned respectively to the source and the target of an oriented path . For
SU(2), irreducible representation of holonomies are provided by the Wigner matrices and labelled by the semi-integer
j-spin numbers, namely

D(jv)(UW) ) Uy = H,[4], (A15)

SU(2) intertwiners are expressed as the (group elements) integrals of a number of copies of irreducible representations
(Wigner matrices). As a compact group, SU(2) is endowed with a Haar measure (invariant under gauge transforma-
tions and coordinate reparametrizations) that enables the definitions of the intertwiner invariant tensors. These latter
quantities can be thought to be associated to the nodes where endpoints (target points) and origins (source points) of
the paths +y intersect. A collection of n path 1,72 ..., intersecting at their target and source points (nodes) provides
a graph I'. The internal indices of the Wigner matrices integrated ensure gauge-invariance through the contraction
with the holonomies flowing across the node. Integrating in the Haar measure the irreducible representations of the
holonomies, the target or source points of which cross at the node, and which are labelled by the spin jy,, Jys - - - Jyns
provided the expression for the inter-twiner

UL:/ dU DU)(U) DU=)(U) ... DU (U), (A16)
SU(2)

having again suppressed all the (intertwiner and Wigner matrices) representation indices.

A collection of holonomies, the internal indices of which are contracted with the intertwiners defined by inte-
gration of the group elements at the nodes, defines a spin-network state. In terms of its constituents, the holonomies
and the intertwiners, a spin-network state cast as

Ur gy ey Al = <® v) - b U,[4]) ] (A17)

nel’
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1/2
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FIG. 10: A graph with tri-valent nodes colored under SU(2).

where the dot denotes the contraction of internal indices, and [ = 1,...n label the n paths v that compose the graph
T.
SU(2) spin-network states are equipped with a Haar measure, which ensures invariance under gauge transformations
and diffeomorphisms (coordinate reparametrizations) on the base manifold M, of the internal product
< \I/F/’j;%’ [AH quyj’y-,[‘n [A} >= 5{1“/}7{1—*}(%;7%5“

fn,?LTL

(A18)

Invariance under diffeomorphisms, which is expressed by the Kronecker delta between classes of equivalence of graphs
endowed with the same topology, namely {I'}, instantiates the symmetry under elastic transformations, rendering
the graph structure truly topological. In this study, graphs I' are also referred to as 1-complexes.

3. Graph-dynamics

A concept of dynamics requires the definition of boundary states (1-complexes), the quantum evolution of which is
provided by relative transition amplitudes. These are captured by the path integral (realizing the vacuum-vacuum
transition, with no underlying graph structure) and the expectation values in its measure. It is convenient to introduce
the mathematical concept of 2-complex C. A 2-complex C is composed by edges e departing or ending either at nodes
n € I or at vertices v internal to C, by faces f bounded by either links v or internal edges e, and vertices v where edges
cross. We are going to show how to associate a functor — either the partition function Z¢[U,,], or the expectation
value of boundary state in the path-integral associated to the topological theory — to a 2-complex C endowed with
boundary group elements U, .
The partition function for the BF model over a SU(2)-bundle is specified by the expression

Z= / DAB e Jaa THBAF] — / DA“S(F)". (A19)

where in the last equality we introduced a Dirac delta measure on the space of flat connections. This is understood
[47] from smearing the phase-space variables and then casting the partition function as

Z(A) = / I1 5. / [ dUe e eea TIBeFL (A20)
su(2)®

e€E SUR)P" e
where A denotes the triangulation of the manifold M — this allows to introduce a simplicial complex A* that is
dual to the triangulation A — E denotes the set of edges e of the triangulation A, and E* the set of edges ex of the
dual simplicial complex A*. Furthermore, in the expression (A20) we have been using the natural definition of the
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curvature, which is expressed by the product of group elements U,, associated to the links around the boundary 0 fx
of a dual face fx (thus associated with the dual face itself):

Uf* = H Ue* . (A21)
e* €D fx*

where F, = InUy-, namely individuates a Lie algebra element that entails the discretization of the connection field
curvature on the edges e of A. Integration over the algebra elements B, provides the expression for the Dirac delta
on the product of group elements that realizes the smearing of the curvature, namely

/ [ Be et >eea ™IBFel = §(efe) = 5(Uy.) . (A22)
su(2)” L
The partition function then casts
Z(A) :/ AUex | | 6(Uyy) . (A23)
SU(2)F* g H )

This formula finally admits a re-manipulation in terms of the irreducible representation of SU(2), which thanks to
the Peter-Weyl expansion, is provided by Plancherel formula

8(Up) =D Ay (Ur.), (A24)
Jfx

where jr. denote half-integer numbers that label SU(2) irreducible representations, A; = (2j + 1) the dimension of
these latter, and x? (U) = D7(U)% is the character of the group element U € SU(2), i.e. the trace of a Wigner matrix
over the internal indices « in the representation Hilbert space. Then the partition function recasts

dU, Tr[D Ues)] s (A25)
]Zf; /SU(z)E* eg* H o* gf*

which depends only on the recoupling theory of SU(2), and retains a dependence on the dimension of the manifold
M, in which both the graphs I' and the 2-complex C are merged. Thus, we can identify the no-boundary path-integral
amplitude Z(A) with the no-boundary functor Z¢, i.e.

Ze = Z(A) (A26)

where there is no dependence on the boundary group elements.
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