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Abstract5

Networks of “conscious agents” (CAs) as defined by Hoffman and Prakash (Fron-6

tiers in Psychology 5, 577, 2014) are shown to provide a robust and intuitive represen-7

tation of perceptual and cognitive processes in the context of the Interface Theory of8

Perception (Hoffman, Singh and Prakash, Psychonomic Bulletin & Review 22, 1480-9

1506, 2015). The behavior of the simplest CA networks is analyzed exhaustively.10

The construction of short- and long-term memories and the implementation of atten-11

tion, categorization and case-based planning are demonstrated. These results show12
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1



that robust perception and cognition can be modelled independently of any ontolog-13

ical assumptions about the world in which an agent is embedded. Any agent-world14

interaction can, in particular, also be represented as an agent-agent interaction.15

Keywords: Active inference; Complex networks; Computation; Learning; Memory; Plan-16

ning; Predictive coding; Self representation; Reference frame; Turing completeness17

1 Introduction18

It is a natural and near-universal assumption that the world objectively has the properties19

and causal structure that we perceive it to have; to paraphrase Einstein’s famous remark20

(cf. Mermin, 1985), we naturally assume that the moon is there whether anyone looks at it21

or not. Both theoretical and empirical considerations, however, increasingly indicate that22

this assumption is not correct. Beginning with the now-classic work of Aspect, Dalibard23

and Roger (1982), numerous experiments by physicists have shown that neither photon24

polarization nor electron spin obey local causal constraints; within the past year, all rec-25

ognized loopholes in previous experiments along these lines have been closed (Hensen et26

al., 2015; Shalm et al., 2015; Giustina et al., 2015). The trajectories followed by either27

light (Jacques et al., 2007) or Helium atoms (Manning, Khakimov, Dall and Truscott,28

2015) through an experimental apparatus have been shown to depend on choices made29

by random-number generators after the particle has fully completed its transit of the ap-30

paratus. Optical experiments have been performed in which the causal order of events31

within the experimental apparatus is demonstrably indeterminate (Rubino et al., 2016).32

As both the positions and momenta of large organic molecules have now been shown to ex-33

hibit quantum superposition (Eibenberger et al., 2013), there is no longer any justification34

for believing that the seemingly counter-intuitive behavior observed in these experiments35

characterizes only atomic-scale phenomena. These and other results have increasingly led36

physicists to conclude that the classical notion of an observer-independent “objective” real-37

ity comprising spatially-bounded, time-persistent “ordinary objects” and well-defined local38

causal processes must simply be abandoned (e.g. Jennings and Leifer, 2015; Wiseman,39

2015).40

These results in physics are complemented within perceptual psychology by computational41

experiments using evolutionary game theory, which consistently show that organisms that42

perceive and act in accord with the true causal structure of their environments will be43

out-competed by organisms that perceive and act only in accord with arbitrarily-imposed,44

organism-specific fitness functions (Mark, Marion and Hoffman, 2010; reviewed by Hoff-45

man, Singh and Prakash, 2015). These results, together with theorems showing that an46

organism’s perceptions and actions can display symmetries that the structure of the en-47

vironment does not respect (Hoffman, Singh and Prakash, 2015; Prakash and Hoffman,48

in review) and that organisms responsive only to fitness will out-complete organisms that49

perceive the true structure of the environment in all but a measure-zero subset of environ-50

ments (Prakash, Stephens, Hoffman, Singh and Fields, in review), motivate the interface51
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theory of perception (ITP), the claim that perceptual systems, in general, provide only an52

organism-specific “user interface” to the world, not a veridical representation of its struc-53

ture (Hoffman, Singh and Prakash, 2015; Hoffman, 2016). According to ITP, the perceived54

world, with its space-time structure, objects and causal relations, is a virtual machine im-55

plemented by the coupled dynamics of an organism and its environment. Like any other56

virtual machine, the perceived world is merely an interpretative or semantic construct; its57

structure and dynamics bear no law-like relation to the structure and dynamics of its im-58

plementation (e.g. Cummins, 1977). In software systems, the absence of any requirement59

for a law-like relation between the structure and dynamics of a virtual machine and the60

structure and dynamics of its implementation allows hardware and often operating system61

independence; essentially all contemporary software systems are implemented by hierar-62

chies of virtual machines for this reason (e.g. Goldberg, 1974; Tanenbaum, 1976; Smith63

and Nair, 2005). The ontological neutrality with which ITP regards the true structure of the64

environment is, therefore, analogous to the ontological neutrality of a software application65

that can run on any underlying hardware.66

The evolutionary game simulations and theorems supporting ITP directly challenge the67

widely-held belief that perception, and particularly human perception is veridical, i.e. that68

it reveals the observer-independent objects, properties and causal structure of the world.69

While this belief has been challenged before in the literature (e.g. by Koenderink, 2015), it70

remains the dominate view by far among perceptual scientists. Marr (1982), for example,71

held that humans “very definitely do compute explicit properties of the real visible surfaces72

out there, and one interesting aspect of the evolution of visual systems is the gradual move-73

ment toward the difficult task of representing progressively more objective aspects of the74

visual world” (p. 340). Palmer (1999) similarly states, “vision is useful precisely because it75

is so accurate ... we have what is called veridical perception ... perception that is consistent76

with the actual state of affairs in the environment” (p. 6). Geisler and Diehl (2003) claim77

that “much of human perception is veridical under natural conditions” (p. 397). Trivers78

(2011) agrees that “our sensory systems are organized to give us a detailed and accurate79

view of reality, exactly as we would expect if truth about the outside world helps us to80

navigate it more effectively” (p. xxvi). Pizlo, Sawada and Steinman (2014) emphasize81

that “veridicality is an essential characteristic of perception and cognition. It is absolutely82

essential. Perception and cognition without veridicality would be like physics without the83

conservation laws.” (p. 227; emphasis in original). The claim of ITP is, in contrast, that84

objects, properties and causal structure as normally conceived are observer-dependent rep-85

resentations that, like virtual-machine states in general, may bear no straightforward or86

law-like relation to the actual structure or dynamics of the world. Evidence that specific87

aspects of human perception are non-veridical, e.g. the narrowing and flattening of the88

visual field observed by Koenderink, van Doorn and Todd (2009), the distortions of per-89

spective observed by Pont et al. (2012), or the inferences of three-dimensional shapes from90

motion patterns projectively inconsistent with such shapes observed by He, Feldman and91

Singh (2015) provide prima facie evidence for ITP.92

The implication of either ITP or quantum theory that the objects, properties and causal93
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relations that organisms perceive do not objectively exist as such raises an obvious challenge94

for models of perception as an information-transfer process: the näıve-realist assumption95

that perceptions of an object, property or causal process X are, in ordinary circumstances,96

results of causal interactions with X cannot be sustained. Hoffman and Prakash (2014)97

proposed to meet this challenge by developing a minimal, implementation-independent for-98

mal framework for modelling perception and action analogous to Turing’s (1936) formal99

model of computation. This “conscious agent” (CA) framework posits entities or systems100

aware of their environments and acting in accordance with that awareness as its funda-101

mental ontological assumption. The CA framework is a minimal refinement of previous102

formal models of perception and perception-action cycles (Bennett, Hoffman and Prakash,103

1989). Following Turing’s lead, the CA framework is intended not as a scientific or even104

philosophical theory of conscious awareness, but rather as a minimal, universally-applicable105

formal model of conscious perception and action. The universality claim made by Hoffman106

and Prakash (2014) is analogous to the Church-Turing thesis of universality for the Turing107

machine. Hoffman and Prakash (2014) showed that CAs may be combined to form larger,108

more complex CAs and that the CA framework is Turing-equivalent and therefore univer-109

sal as a representation of computation; this result is significantly elaborated upon in what110

follows.111

The present paper extends the work of Hoffman and Prakash (2014) by showing that the112

CA framework provides a robust and intuitive representation of perceptual and cognitive113

processes in the context of ITP. Anticipation, expectations and generative models of the114

environment, in particular, emerge naturally in all but the simplest CA networks, providing115

support for the claimed universality of the CA framework as a model of agent - world116

interactions. We first define CAs and distinguish the extrinsic (external or “3rd person”)117

perspective of a theorist describing a CA or network of CAs from the intrinsic (internal118

or “1st person”) perspective of a particular CA. Consistency between these perspectives119

is required by ITP; a CA cannot, in particular, be described as differentially responding120

to structure in its environment that ITP forbids it from detecting. Such consistency can121

be achieved by the “conscious realism” assumption (Hoffman and Prakash, 2014) that122

the world in which CAs are embedded is composed entirely of CAs. We show that the123

CA framework allows the incorporation of Bayesian inference from “images” to “scene124

interpretations” as described by Hoffman and Singh (2012) and show that a CA can be125

regarded as incorporating a “Markov blanket” as employed by Friston (2013) when this126

is done. We analyze the behavior of the simplest networks of CAs in detail from the127

extrinsic perspective, and discuss the formal structure and construction of larger, more128

complex networks. We show that a concept of “fitness” for CAs emerges naturally within129

the formalism, and that this concept corresponds to concepts of “centrality” already defined130

within social-network theory. We then consider the fundamental question posed by ITP:131

that of how non-veridical perception can be useful. We show that CAs can be constructed132

that implement short- and long-term memory, categorization, active inference, goal-directed133

attention, and case-based planning. Such complex CAs represent their world to themselves134

as composed of “objects” that recur in their experience, and are capable of rational actions135

with respect to such objects. This construction shows that specific ontological assumptions136
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about the world in which a cognitive agent is embedded, including the imposition of a priori137

fitness functions, are unnecessary for the theoretical modelling of useful cognition. The non-138

veridicality of perception implied by ITP need not, therefore, be regarded as negatively139

impacting the behavior of an intelligent system in a complex, changing environment.140

2 Conscious agents: Definition and interpretation141

2.1 Definition of a CA142

As noted, the CA framework is motivated by the hypothesis that agents of interest to143

psychology are aware of the environments in which they act, even if this awareness is rudi-144

mentary by typical human standards (Hoffman and Prakash, 2014). Our goal here is to145

develop a minimal and fully-general formal model of perception, decision and action that146

is applicable to any agent satisfying this hypothesis. Minimality and generality can be147

achieved using a formalism based on measurable sets and Markovian kernels as described148

below. This formalism allows us to explore the dynamics of multi-agent interactions (§3)149

and the internal structures and dynamics, particularly of memory and attention systems,150

that enable complex cognition (§4) constructively. We accordingly impose no a priori as-151

sumptions regarding behavioral reportability or other criteria for inferring, from the outside,152

that an agent is conscious per se or is aware of any particular stimulus; nor do we impose153

any a priori distinction between conscious and unconscious states. Considering results such154

as those reviewed by Boly, Sanders, Mashour and Laureys (2013), we indeed regard such155

criteria and distinctions, at least as applied to living humans, as conceptually untrustwor-156

thy and possibly incoherent. We thus treat awareness or consciousness as fundamental and157

irreducible properties of agents, and ask, setting aside more philosophical concerns (but158

see Hoffman and Prakash, 2014 for extensive discussion), what structural and dynamic159

properties such agents can be expected to have.160

We begin by defining the fundamental mathematical notions on which the CA framework161

is based; we then interpret these notions in terms of perception, decision and action.162

Definition 1. Let <B,B> and <C, C> be measurable spaces. Equip the unit interval [0, 1]163

with its Borel σ-algebra. We say that a function K:B×C → [0, 1] is a Markovian kernel164

from B to C if:165

(i) For each measurable set E ∈ C, the functionK(·, E) : B → [0, 1] enacted by b 7→ K(b, E)166

is a measurable function; and167

(ii) For each b ∈ B, the function K(b, ·) enacted by F 7→ K(b, F ), F ∈ C is a probability168

measure on C.169

In particular, if K is a Markovian kernel from B to C, then for any measurable D ⊂ B, the170

function enacted by x 7→ K(x,D) ∈ [0, 1] assigns to each x in B a probability distribution171
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on C. When the spaces involved are finite, the Markov kernel can be represented as a172

matrix whose rows sum to unity.173

We represent a CA as a labelled directed graph as shown in Fig. 1. This graph implies the174

development of a cyclic process, in which we can think of, e.g. the kernel D : X ×G → G175

as follows: for each instantiation g0 of G in the immediately previous cycle, and the current176

instantiation of x ∈ X ,D(x, g0; ·) gives the probability distribution of the g ∈ G instantiated177

at the next step. The other kernels A and P are interpreted similarly. Formally,178

Definition 2. Let <W,W>, <X,X> and <G,G> be measurable spaces. Let P be a179

Markovian kernel P : W × X → X, D be a Markovian kernel D : X × G → G, and180

A be a Markovian kernel A : G × W → W . A conscious agent (CA) is a 7-tuple181

[(X,X ), (G,G), (W,W), P,D,A, t], where t is a positive integer parameter.182

Fig. 1 : Representation of a CA as a labelled directed graph. W , X and G183

and measurable sets, P , D, and A are Markovian kernels, and t is an integer184

parameter.185

Hoffman and Prakash (2014) defined a CA, given the measurable space <W,W>, as a186

6-tuple [(X,X ), (G,G), P,D,A, t] where P : W × X → [0, 1], D : X × G → [0, 1] and187

A : G × W → [0, 1] are Markovian kernels and t is a positive integer parameter. Here188

we explicitly include <W,W> in the definition of a CA. Following Hoffman, Singh and189

Prakash (2015) and Prakash and Hoffman (in review), we also explicitly allow the P , D,190

and A kernels to depend on the elements of their respective target sets. Informally, for191

x ∈ X and g ∈ G, for example, and any measurable H ⊂ G, the function enacted by192

(x, g) 7→ K(x, g,H) is real-valued and can be considered to be the regular conditional193

probability distribution Prob(H|x, g) under appropriate conditions on the spaces involved194

(Parthasarathy, 2005). The difference in representational power between the more general,195

target-set dependent kernels specified here and the original, here termed “forgetful,” kernels196

of Hoffman and Prakash (2014) is discussed below.197

We interpret elements of W as representing states of the “world,” making no particular198

ontological assumption about the elements or states of this world. We interpret elements of199

6



X and G as representing possible conscious experiences and actions (strictly speaking, they200

consist of formal tokens of possible conscious experiences and actions), respectively. The201

kernels P,D and A represent perception, decision and action operators, where “perception”202

includes any operation that changes the state ofX , “decision” is any operation that changes203

the state of G and “action” is any operation that changes the state of W . The set X is, in204

particular, taken to represent all experiences regardless of modality; hence P incorporates205

all perceptual modalities. The set G and kernel A are similarly regarded as multi-modal.206

With this interpretation, perception can be viewed as an action performed by the world;207

how these “actions” can be unpacked into the familiar bottom-up and top-down components208

of perceptual experience is explored in detail in §4 below. The kernels P,D and A are taken209

to act whenever the states of W,X or G, respectively, change. Both the decisions D and210

the actions A of the CA are regarded as “freely chosen” in a way consistent with the211

probabilities specified by D and A, as are the actions “by the world” represented by P ;212

these operators are treated as stochastic in the general case to capture this freedom from213

determination. The parameter t is a CA-specific proper time; t is regarded as “ticking”214

and hence incrementing concurrently with the action of D, i.e. immediately following each215

change in the state of X . No specific assumption is made about the contents of X ; in216

particular, it is not assumed that X includes tokens representing the values of either t or217

any elements of G. A CA need not, in other words, in general experience either time or its218

own actions; explicitly enabling such experiences for a CA is discussed in §4.1 below.219

It will be assumed in what follows that the contents of X and G can be considered to be220

representations encoded by finite numbers of bits; for simplicity, all representations in X221

or G will be assumed to be encoded, respectively, by the same numbers of bits. Hence X222

and G can both be assigned a “resolution” with which they encode, respectively, inputs223

from and outputs to W . It is, in this case, natural to regard D as operating in discrete224

steps; for each previous instantiation of G, D maps one complete, fully-encoded element of225

X to one complete, fully-encoded element of G. As the minimal size of a representation in226

either X or G is one bit, the minimal action of D is a mapping of one bit to one bit. While227

the CA framework as a whole is purely formal, we envision finite CAs to be amenable to228

physical implementation. If any such physical implementation is assumed to be constrained229

by currently accepted physics and the action of D is regarded as physically (as opposed230

to logically) irreversible, the minimal energetic cost of executing D is given by Landauer’s231

(1961; 1999) principle as ln2 kT , where k is Boltzmann’s constant and T is temperature in232

degrees Kelvin. In this case, the minimal unit of t is given by t = h/(ln2 kT ), where h233

is Planck’s constant. At T ∼ 310K, physiological temperature, this value is t ∼ 100 fs,234

roughly the response time of rhodopsin and other photoreceptors (Wang et al., 1994). At235

even the 50 ms timescale of visual short-term memory (Vogel, Woodman and Luck, 2006),236

this minimal discrete time would appear continuous. As elaborated further below, however,237

no general assumption about the coding capacities in bits of X or G are built into the CA238

framework. What is to count, in a specific model, as an execution of D and hence an239

incrementing of t is therefore left open, as it is in other general information-processing240

paradigms such as the Turing machine.241
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Hoffman and Prakash (2014) explicitly proposed the “Conscious agent thesis: Every prop-242

erty of consciousness can be represented by some property of a dynamical system of con-243

scious agents” (p. 10), where the term “conscious agent” here refers to a CA as defined244

above. As CAs are explicitly formal models of real conscious agents such as human be-245

ings, the “properties of consciousness” with which this thesis is concerned are the formal246

or computational properties of consciousness, e.g. the formal or computational properties247

of recall or the control of attention, not their phenomenal properties. The conscious agent248

thesis is intended as an empirical claim analogous to the Church-Turing thesis. Just as the249

demonstration of a computational process not representable as a Turing machine computa-250

tion would falsify the Church-Turing thesis, the demonstration of a conscious process, e.g.251

a process of conscious recognition, inference or choice, not representable by the action of252

a Markov kernel would falsify the conscious agent thesis. We offer in what follows both253

theoretically-motivated reasons and empirical evidence to support the conscious agent the-254

sis as an hypothesis. Whether the actual implementations of conscious processes in human255

beings or other organisms can in fact be fully captured by a representation based on Markov256

kernels remains an open question.257

2.2 Extrinsic and intrinsic perspectives258

A central claim of ITP is that perceptual systems do not, in general, provide a veridical259

representation of the structure of the world; in particular, “objects” and “causal relations”260

appearing as experiences in X are in general not in any sense homomorphic to elements or261

relationships between elements in W . This claim is, clearly, formulated from the extrinsic262

perspective of a theorist able to examine the behavior of a CA “from the outside” and to263

determine whether the kernel P is a homomorphism of W or not. The evolutionary game264

theory experiments reported by Mark, Marion and Hoffman (2010) were conducted from265

this perspective. As is widely but not always explicitly recognized, the extrinsic perspective266

is of necessity an “as if” conceit; a theorist can at best construct a formal representation267

of a CA and ask how the interaction represented by the P −D−A cycle would unfold if it268

had particular formal properties (e.g. Koenderink, 2014). The extrinsic perspective is, in269

other words, a perspective of stipulation; it is not the perspective of any observer. For the270

present purposes, the extrinsic perspective is simply the perspective from which the kernels271

P , D and A may be formally specified.272

The extrinsic perspective of the stipulating theorist contrasts with another relevant perspec-273

tive, the intrinsic perspective of the CA itself. That every CA has an intrinsic perspective274

is a consequence of the intended interpretation of CAs as conscious agents that experience275

their worlds. Hence every CA is an observer, and the intrinsic perspective is the observer’s276

perspective. The intrinsic perspective of a CA is most clearly formulated using the concept277

of a “reduced CA” (RCA), a 4-tuple [(X,X ), (G,G), D, t]. The RCA, together with a choice278

of extrinsic elements W , A and P , is then what we have defined above as a CA. An RCA279

can be viewed as both embedded in and interacting with the world represented by W . The280

RCA freely chooses the action(s) to take - the element(s) of G to select - in response to281
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any experience x ∈ X ; this choice is represented by the kernel D. The action A on W282

that the RCA is capable of taking is determined, in part, by the structure of W . Similarly,283

the action P with which W can affect the RCA is determined, in part, by the structure284

of the RCA. With this terminology, the central claim of ITP is that an RCA’s possible285

knowledge of W is completely specified by X ; the element(s) of X that are selected by P286

at any given t constitute the RCA’s entire experience of W at t. The structure and content287

of X completely specify, therefore, the intrinsic perspective of the RCA. In particular, ITP288

allows the RCA no independent access to the ontology of W ; consistency between intrinsic289

and extrinsic perspectives requires that no such access is attributed to any RCA from the290

latter perspective. An RCA does not, in particular, have access to the definitions of its291

own P , D or A kernels; hence an RCA has no way to determine whether any of them are292

homomorphisms. Similarly, an RCA has no access to the definitions of any other RCA’s P ,293

D or A kernels, or to any other RCA’s X or G. An RCA “knows” what currently appears294

as an experience in its own X but nothing else; as discussed in §4.1 below, for an RCA295

even to know what actions it has available or what actions it has taken in the past, these296

must be represented explicitly in X . Any structure attributed to W from the intrinsic297

perspective of an RCA is hypothetical in principle; such attributions of structure to W can298

be disconfirmed by continued observation, i.e. additional input to X , but can never be299

confirmed. In this sense, any RCA is in the epistemic position regarding W that Popper300

(1963) claims characterizes all of science.301

From the intrinsic perspective, an immediate consequence of the ontological neutrality of302

ITP is that an RCA cannot determine, by observation, that the internal dynamics of its303

associated W is non-Markovian; hence it cannot distinguish W , as a source of experiences304

and a recipient of actions, from a second RCA. The RCA [(X,X ), (G,G), D, t], in partic-305

ular, cannot distinguish the interaction with W shown in Fig. 1 from an interaction with306

a second RCA [(X ′,X ′), (G′,G ′), D′, t′] as shown in Fig. 2. From the extrinsic perspective307

of a theorist, Fig. 2 can be obtained from Fig. 1 by interpreting the perception kernel P308

as representing actions by W on the RCA [(X,X ), (G,G), D, t] embedded within it. Each309

such action P (w, ·) generates a probability distribution of experiences x in X . If an agent’s310

perceptions are to be regarded as actions on the agent by its world W , however, nothing311

prevents similarly regarding the agent’s actions onW as “perceptions” ofW . IfW both per-312

ceives and acts, it can itself be regarded as an agent, i.e. an RCA [(X ′,X ′), (G′,G ′), D′, t′],313

where the kernel D′ represents W ’s internal dynamics. This symmetric interpretation of314

action and perception from the extrinsic perspective, with its concomitant interpretation315

of W as itself an RCA, is consistent with the postulate of “conscious realism” introduced316

by Hoffman and Prakash (2014), who employ RCAs in their discussion of multi-agent com-317

binations without introducing this specific terminology. More explicitly, conscious realism318

is the ontological claim that the “world” is composed entirely of reduced conscious agents,319

and hence can be represented as a network of interacting RCAs as discussed in more detail320

in §3.2 below. Conscious realism is effectively, once again, a requirement that the intrinsic321

and extrinsic perspectives be mutually consistent: since no RCA can determine that the322

internal dynamics of its associated W are non-Markovian from its own intrinsic perspective,323

no theoretical, extrinsic-perspective stipulation that its W has non-Markovian dynamics is324

9



allowable. Every occurrence of the symbol W can, therefore, be replaced, as in Fig. 2,325

by an RCA. When this is done, all actions - all kernels A - act directly on the experience326

spaces X of other RCAs as shown in Fig. 2. If it is possible to consider any arbitrary327

system - any directed subgraph comprising sets and kernels - as composing a CA from the328

extrinsic perspective, then it is also possible, from the intrinsic perspective of any one of329

the RCAs involved, to consider the rest of the network as composing a single RCA with330

which it interacts.331

Fig. 2 : Representation of an interaction between two RCAs as a labelled di-332

rected graph (cf. Hoffman and Prakash, 2014, Fig. 2). Note that consistency333

requires that the actions A possible to the lower RCA must be the same as the334

perceptions P possible for the upper RCA and vice-versa.335

2.3 Bayesian inference and the Markov blanket336

As emphasized above, the set X represents the set of possible experiences of a conscious337

agent within the CA framework. In the case of human beings, including even neonates338

(e.g. Rochat, 2012; see also §4 below), such experiences invariably involve interpretation339

of raw sensory input, e.g. of photoreceptor or hair-cell excitations. It is standard to model340

interpretative inferences from raw sensory input or “images” in some modality to expe-341

rienced “scene interpretations” (to use visual language) using Bayesian Decision Theory342

(BDT; reviewed e.g. by Maloney and Zhang, 2010). In recognition of the fact that such343

inferences are executed by the perceiving organism and are hence subject to the constraints344

of an evolutionary history, Hoffman and Singh (2012) introduced the framework of Com-345

putational Evolutionary Perception (CEP) shown in Fig. 3b. This framework differs from346

many formulations of BDT by emphasizing that both posterior probability distributions347

and likelihood functions are generated within the organism. The posterior distributions,348

in particular, are not generated directly by the world W (see also Hoffman, Singh and349

Prakash, 2015).350
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Fig. 3 : Relation between the current CA framework and the “Markov blanket”351

formalism of Friston (2013). a) The canonical CA, cf. Fig. 1. b) The “Compu-352

tational Evolutionary Perception” (CEP) extension of Bayesian decision theory353

developed by Hoffman and Singh (2012). Here the set Y is interpreted as a set of354

“images” and the set X is interpreted as a set of “scene interpretations,” consis-355

tent with the interpretation of X in the CA framework. The map P2 : W 7→ X356
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is induced by the composition of the “raw” input map P1 with the posterior-357

map - likelihood-map loop. c) Identifying P in the CA framework with P2 in358

the CEP formalism replaces the canonical CA with a four-node graph. Here the359

sets Y and G jointly constitute a Markov blanket as defined by Friston (2013).360

d) Both W and X can be regarded as interacting bi-directionally with just their361

proximate “surfaces” of the Markov blanket comprising Y and G. The blan-362

ket thus isolates them from interaction with each other, effectively acting as an363

interface in the sense defined by ITP.364

The CEP framework effectively decomposes the kernel P of a CA (Fig. 3a) into the com-365

position of a mapping P1 from W to a space Y of “raw” perceptual images with a map366

(labelled B in Hoffman, Singh and Prakash, 2015, Fig. 4) corresponding to the construc-367

tion of a posterior probability distribution on X . The state of the image space Y depends,368

in turn, on the state of X via the feedback of a Bayesian likelihood function; hence the369

embedded posterior - likelihood loop provides the information exchange between prior and370

posterior distributions needed to implement Bayesian inference. The Bayesian likelihood371

serves, in effect, as the perceiving agent’s implicit “model” of the world as it is seen via the372

image space Y .373

As shown by Pearl (1988), any set of states that separates two other sets of states from each374

other in a Bayesian network can be considered a “Markov blanket” between the separated375

sets of states (cf. Friston (2013)). The disjoint union Y ⊔ G of Y and G separates the376

sets W and X in Fig. 3b in this way; hence Y ⊔ G constitutes a Markov blanket between377

W and X (cf. Friston, 2013, Fig. 1). Each of W and X can be regarded as interacting378

bidirectionally, via Markov processes, with a “surface” of the Markov blanket, as shown in379

Fig. 3d. The blanket therefore serves as an “interface” in the sense required by ITP: it380

provides an indirect representation of W to X that is constructed by processes to which X381

has no independent access. Consistent with the assumption of conscious realism above, this382

situation is completely symmetrical: the blanket also provides an indirect representation of383

X to W that is constructed by processes to which W has no independent access. The role384

of the Markov blanket in Fig. 3d is, therefore, exactly analogous to the role of the second385

agent in Fig. 2. The composed Markov kernel D′A in Fig. 2 represents, in this case, the386

internal dynamics of the blanket.387

Friston (2013) argues that any random ergodic system comprising two subsystems separated388

by a Markov blanket can be interpreted as minimizing a variational free energy that can, in389

turn, be interpreted in Bayesian terms as a measure of expectation violation or “surprise.”390

This Bayesian interpretation of “inference” through a Markov blanket is fully consistent391

with the model of perceptual inference provided by the CEP framework. Conscious agents as392

described here can, therefore, be regarded as free-energy minimizers as described by Friston393

(2010). This formal as well as interpretational congruence between the CA framework and394

the free-energy principle (FEP) framework of Friston (2010) is explored further below,395

particularly in §3.3 and §4.3.396
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2.4 Effective propagator and master equation397

From the intrinsic perspective of a particular CA, experience consists of a sequence of398

states of X , each of which is followed by an action of D and a “tick” of the internal399

counter t. The sequence of transitions between successive states of X can be regarded as400

generated by an effective propagator Teff : MX(t) −→ MX(t + 1), where MX(t) is the401

collection of probability measures on X at each “time” t defined by the internal counter.402

This propagator satisfies, by definition, a master equation that, in the discrete t case, is403

the Chapman-Kolmogorov equation: If µt is the probability distribution at time t, then404

µt+1 = Teffµt.405

The propagator Teff cannot, however, be characterized from the intrinsic perspective: all406

that is available from the intrinsic perspective is the current state X(t), including, as407

discussed in §4 below, the current states of any memories contained in X(t). From the408

extrinsic perspective, the structure of Teff depends on the structure of the world W . Here409

again, the assumption of conscious realism and hence the ability to represent any W as a410

second agent as shown in Fig. 2 is critical. In this case, Teff = PD′AD, where in the general411

case the actions of each of these operators at each t depend on the initial, t = 0 state of the412

network. As discussed above, the P and D kernels within this composition can be regarded413

as specifying the interaction between X and a Markov blanket with internal dynamics D′A.414

The claim that Teff is a Markov process on X is then just the claim that the composed kernel415

PD′AD is Markovian, as kernel composition guarantees it must be. As Friston, Levin,416

Sengupta and Pezzulo (2015) point out, the Markov blanket framework “only make(s) one417

assumption; namely, that the world can be described as a random dynamical system” (p. 9).418

Both the above representation of Teff and the Chapman-Kolmogorov equation µt+1 = Teffµt419

are independent of the structure of the Markov blanket, which as discussed in §3.2 below420

can be expanded into an arbitrarily-complex networks of RCAs, provided this condition is421

met.422

For simplicity, we adopt in what follows the assumption that all relevant Markov kernels,423

and therefore the propagator Teff , are homogeneous and hence independent of t for any424

agent under consideration. As discussed further below, this assumption imposes interpre-425

tations of both evolution (§3.3) and learning (§4.3) as processes that change the occupation426

probabilities of states of X and G but do not change any of the kernels P , D or A. This427

interpretation can be contrasted with that of typical machine learning methods, and in428

particular, typical artificial neural network methods, in which the outcome of learning is429

an altered mapping from input to output. The current interpretation is, however, consis-430

tent with Friston’s (2010; 2013) characterization of free-energy minimization as a process431

that maintains homeostasis. In the current framework, the maintenance of homeostasis432

corresponds to the maintenance of an experience of homeostasis, i.e. to continued high433

probabilities of occupation of particular components of the state of X . Both evolution434

and learning act to maintain homeostasis and hence maintain these high state-occupation435

probabilities. This idea that maintenance of homeostasis is signalled by maintaining an436

experience of homeostasis is consistent with the conceptualization of affective state as an437

experience-marker of a physiological, and particularly homeostatic state (Damasio, 1999;438
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Peil, 2015). As noted earlier, no assumption that such experiences are reportable by any439

particular, e.g. verbal behavior are made (see also §3.3, 4.4 below).440

3 W from the extrinsic perspective: RCA networks441

and dynamic symmetries442

3.1 Symmetric interactions443

From the extrinsic perspective, a CA is a syntactic construct comprising three distinct sets444

of states and three Markovian kernels between them as shown in Fig. 1. We begin here445

to analyze the behavior of such constructs, starting below with the simplest CA network446

and then generalizing (§3.2) to networks of arbitrary complexity. Familiar concepts from447

social-network theory emerge in this setting, and provide (§3.3) a natural characterization448

of “fitness” for CAs.449

Here and in what follows, we assume that each of the relevant σ-algebras contains all450

singleton subsets of its respective underlying set. We call a Markovian kernel “punctual,”451

i.e. non-dispersive, if the probability measures it assigns are Dirac measures, i.e. measures452

concentrated on a singleton subset. In this case, P can be regarded as selecting a single453

element x from X , and can therefore be identified with a function from W × X to X .454

The punctual kernels between any pair of sets are the extremal elements of the set of455

all kernels between those sets provided the relevant σ-algebras contain all of the singleton456

subsets as assumed above; hence characterizing their behavior in the discrete case implicitly457

characterizes the behavior of all kernels in the set. The punctual kernels of a network of458

interacting RCAs specify, in particular, the extremal dynamics of the network. Conscious459

realism entails the purely syntactic claim that the graphs shown in Figs. 1 and 2 are460

interchangable as discussed above; the worldW can, therefore, be regarded as an arbitrarily-461

complex network of interacting RCAs, subject only to the constraint that the A and P462

kernels of the interacting RCAs can be identified (Hoffman and Prakash, 2014).463

The simplest CA network is a dyad in which W = X ⊔ G, where as above the notation464

X ⊔ G indicates the disjoint union of X with G, and A = P ; it is shown in Fig. 4. This465

dyad acts on its own X ; its perceptions are its actions. From a purely formal perspective,466

this dyad is isomorphic to the X - Y dyad of the CEP framework (Fig. 3b); it is also467

isomorphic to the interaction of X with its proximal “surface” of a Markov blanket sepa-468

rating it from W (Fig. 3d). Investigating the behavior of this network over time requires469

specifying, from the extrinsic perspective, the state spaces and operators. The simplest470

case is the symmetric interaction in which the two state spaces are identical. If both X and471

G are taken to contain just one bit, the four possible states of the network can be written472

as |00〉, |01〉, |10〉 and |11〉. Here we will represent these states by the orthogonal (column)473

vectors (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T and (0, 0, 0, 1)T , respectively. The simplest ker-474

nels D : X × G → G and A : G × X → X are punctual. Let x(t) and g(t) denote the475
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state of X and G, respectively, at time t. We slightly abuse the notation and use the letter476

D to refer to the operator IX ⊗ D : X(t) × G(t) → X(t + 1) × G(t + 1), where IX is the477

Identity operator on X . This D leaves the state x of X unchanged but changes the state478

of G to g(t+ 1) = D(x(t), g(t)). Similarly, we will use the letter A to refer to the operator479

A⊗ IG : X(t)×G(t) → X(t+ 1)×G(t+ 1), where IG is the identity operator on G. This480

A leaves the state g of G unchanged, but changes the state of X to x(t+1) = A(g(t), x(t)).481

Note that in this representation, D and A are both executed each time the “clock ticks.”482

Fig. 4 : The simplest possible CA network, the dyad in which W = X ⊔G.483

To reiterate, the decision operator D acts on the state of G but leaves the state of X484

unchanged, i.e. X(t+ 1) = X(t). Only four Markovian operators with this behavior exist.485

These are the identity operator,486

I =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









;

the NOT operator,487

ND =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









;

the controlled-NOT (cNOT) operator that flips the G bit when the X bit is 0,488

CD0 =









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









;
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and the cNOT operator that flips the G bit when the X bit is 1,489

CD1 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

The action operator A acts on the state of X but leaves the state of G unchanged, i.e.490

G(t+1) = G(t). Again, only four Markovian operators with this behavior exist. These are491

the identity operator I defined above, the NOT operator,492

NA =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









;

the cNOT operator that flips the X bit when the G bit is 0,493

CA0 =









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









;

and the cNOT operator that flips the X bit when the G bit is 1,494

CA1 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









.

In principle, distinct CAs with single-bit X and G could be constructed with any one of495

the four possible D operators and any one of the four possible A operators. The CA in496

which both operators are identities is trivial: it never changes state. The CA in which both497

operators are NOT operators is the familiar bistable multivibrator or “flip-flop” circuit. It498

is also interesting, however, to consider the abstract entity – referred to as a “participator”499

in Bennett, Hoffman and Prakash (1989) – in which X and G are fixed at one bit and all500

possible D and A operators can be employed. The dynamics of this entity are generated by501

the operator compositions DA and AD. There are 24 distinct compositions of the above502

7 operators, which form the Symmetric Group on 4 objects, S4. This group appears in a503

number of geometric contexts and is well characterized; the CA dynamics with this group of504

transition operators include limit cycles, i.e. cycles that repeatedly revisit the same states,505

of lengths 1 (the identity operator I), 2, 3 and 4. Hence there are 24 distinct CAs having506

the form of Fig. 3 but with different choices for D and A, with behavior ranging from507

constant (D = A = I) to limit cycles of length 4.508
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It is important to emphasize that there is no sense in which the 1-bit dyad experiences the509

potential complexity of its dynamics, or in which the experience of a 1-bit dyad with one510

choice ofD and A operators is any different from the experience of a 1-bit dyad with another511

choice of operators. Any 1-bit dyad has only two possible experiences, those tokened by |0〉512

and |1〉. The addition of memory to a CA in order to enable it to experience a history of513

states and hence relations between states from its own intrinsic perspective is discussed in514

§4 below.515

The Identity and NOT operators can be expressed as “forgetful” kernels, i.e. kernels that516

do not depend on the state at t of their target spaces, D : X(t) → G(t + 1) and A :517

G(t) → X(t+1) but the cNOT operators cannot be; hence the forgetful kernels introduced518

by Hoffman and Prakash (2014) have less representational power than the state-dependent519

kernels employed in the current definition of a CA. It is also worth noting that the standard520

AND operator taking x(t) and g(t) to x(t + 1) = x(t) and g(t + 1) = x(t) AND g(t) may521

be represented as:522

ANDG =









1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1









and the corresponding OR operator taking x(t) and g(t) to x(t+1) = x(t) and g(t+1) = x(t)523

OR g(t) may be represented as:524

ORG =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 1









.

The value of G(t) cannot be recovered following the action of either of these operators; they525

are therefore logically irreversible. As each of the matrix representations of these operators526

has a row of all zeros, they are not Markovian. The logically irreversible, non-Markovian527

nature of these operators has, indeed, been a primary basis of criticisms of artificial neu-528

ral network and dynamical-system models of cognition; Fodor and Pylyshyn (1988), for529

example, criticize such models as unable, in principle, to replicate the compositionality of530

Boolean operations in domains such as natural language. The standard AND operator531

can, however, be implemented reversibly by adding a single ancillary z bit to X , fixing its532

value at 0, and employing the Toffoli gate that maps [x, y, z] to [x, y, (x AND y) XOR533

z], where XOR is the standard exclusive OR (Toffoli, 1980). The Toffoli gate preserves the534

values of x and y and allows the value of z to be computed from the values of x and y;535

hence it is reversible and can, therefore, be represented as a punctual Markovian kernel.536

The standard XOR operator employed in the Toffoli gate is equivalent to a cNOT. As any537

universal computing formalism must be able to compute AND, the 1-bit dynamics of Fig.538

4 is not computationally universal. The Toffoli gate is, however, computationally universal,539
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so adding a single ancillary bit set to 0 to each space in Fig. 4 is sufficient to achieve540

universality.541

Two distinct graphs representing symmetric, punctual CA interactions have 4 bits in total542

and hence 16 states: the graph shown in Fig. 2 where each of X,G,X ′ and G′ contains one543

bit and the graph shown in Fig. 4 in which each of X and G contains 2 bits. These graphs544

differ from the intrinsic as well as the extrinsic perspectives: in the former case each agent545

experiences only |0〉 or |1〉 – i.e. has the same experience as the 1-bit dyad – while in the546

latter case the agent has the richer experience |00〉, |01〉, |10〉 or |11〉. The dynamics of the547

participator with the first of these structures has been exhaustively analyzed; it has the548

structure of the affine group AGL(4,2). Further analyses of the dynamics of these simple549

systems, including explicit consideration of the behavior of the t counters, is currently550

underway and will be reported elsewhere.551

While the restriction to punctual kernels simplifies analysis, systems in which perception,552

decision and action are characterized by dispersion will have non-punctual kernels P , D and553

A. It is worth noting that from the extrinsic, theorist’s perspective, such dispersion exists554

by stipulation: the kernels P , D and A characterizing a particular CA within a particular555

situation being modelled are stipulated to be stochastic. The probability distributions on556

states of X , G and W that they generate are, from the theorist’s perspective, distributions557

of objective probabilities: they are stipulated “from the outside” as fixed components of the558

theoretical model. As will be discussed in §4 below, these become subjective probabilities559

when viewed from the intrinsic perspective of any observer represented within such a model.560

However as noted earlier, ITP forbids any CA from having observational access to its own561

P , D, or A kernels; hence no CA can determine by observation that its kernels are non-562

punctual.563

3.2 Asymmetric interactions and RCA combinations564

While symmetric interactions are of formal interest, a “world” containing only two sub-565

systems of equal size has little relevance to either biology or psychology. Real organisms566

inhabit environments much larger and richer than they are, and are surrounded by other567

organisms of comparable size and complexity. The realistic case, and the one of interest568

from the standpoint of ITP, is that in which the σ-algebra W is much finer than either569

X or G. This asymmetrical interaction can be considered effectively bandwidth-limited by570

the relatively small encoding capacities of X and G. Representing the two-RCA interaction571

shown in Fig. 2 by the shorthand notation RCA1 ⇆ RCA2, this more realistic situation can572

be represented as in Fig. 5, in which no assumptions are made about the relative “sizes”573

of the RCAs or the dimensionality of the Markovian kernels involved.574
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Fig. 5 : a) Nine bidirectionally interacting RCAs, equivalent to a single RCA575

interacting with its “world” W and hence to a single CA. b) A network similar576

to that in a), except that some interactions are not bidirectional. Here again,577

the RCA network is equivalent to a single RCA interacting with a structurally578

distinct “world” W’ and hence to a distinct single CA. In general, RCA networks579

of either kind are asymmetric for every RCA involved.580

When applied to the multi-RCA interaction in Fig. 5, consistency between intrinsic and581

extrinsic perspectives requires that when a theorist’s attention is focussed on any single582

RCA, the other RCAs together can be considered to be the “world.” If attention is focussed583

on RCA1, for example, it must be possible to regard the subgraph comprising RCA2 - RCA9584

as the “world” W (Fig. 5a) and the entire network as specifying a single CA in the canonical585

form of Fig. 1. As every RCA interacts bidirectionally with its “world,” any directed path586

within an RCA network must be contained within a closed directed path. These paths587

do not, however, all have to be bidirectional; the RCA network in Fig. 5b can equally588

well be represented in the canonical form of Fig. 1. The “worlds” of Fig. 5a and Fig.589

5b have distinct structures from the extrinsic perspective. However, ITP requires that the590

interaction between RCA1 and its “world” does not determine the internal structure of591
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the “world”; indeed an arbitrarily large number of alternative structures could produce592

the same inputs to RCA1 and hence the same sequence of experiences for RCA1. RCA1593

cannot, in particular, determine what other RCA(s) it is interacting with at any particular594

“time” t as measured by its counter, or determine whether the structure or composition of595

the network of RCAs with which it is interacting changes from one value of t to the next.596

This lack of transparency renders the “world” of any RCA a “black box” as defined by597

classical cybernetics (Ashby, 1956): a system with an internal structure under-determined,598

in principle, by finite observations. Even a “good regulator” (Conant and Ashby, 1970) can599

only regulate a black box to the extent that the behavior of the box remains within the600

bounds for which the regulator was designed; whether a given black box will do so is always601

unpredictable even in principle. From the intrinsic perspective of the “world,” the same602

reasoning renders RCA1 a black box; hence consistency between perspectives requires that603

any RCA - and hence any CA - for which the sets X and G are not explicitly specified be604

regarded as potentially having an arbitrarily rich internal structure.605

In general, consistency between intrinsic and extrinsic perspectives requires that any ar-606

bitrary connected network of RCAs can be considered to be a single canonical-form CA;607

for each RCA in the network, all of the other RCAs in the network, regardless of how608

they are connected, together form of “world” of that RCA. Non-overlapping boundaries609

can, therefore, be drawn arbitrarily in a network of interacting RCAs and the RCAs within610

each of the boundaries “combined” to form a smaller network of interacting RCAs, with611

a single canonical-form CA or X − G dyad as the limiting case in which all RCAs in612

the network have been combined. Connected networks that characterize gene regulation613

(Agrawal, 2002), protein interactions (Barabási and Oltvai, 2004), neurocognitive archi-614

tecture (Bassett and Bullmore, 2006), academic collaborations (Newman, 2001) and many615

other phenomena exhibit dynamic patterns including preferential attachment (new connec-616

tions are preferentially added to already well-connected nodes; Barabási and Albert, 1999)617

and the emergence of small-world structure (short minimal path lengths between nodes618

and high clustering; Watts and Strogatz, 1998). Such networks typically exhibit “rich619

club” connectivity, in which the most well-connected nodes at one scale form a small-world620

network at the next-larger scale (Colizza, Flammini, Serrano and Vespignani, 2006); the621

human connectome provides a well-characterized example (van den Heuvel and Sporns,622

2011). Networks in which connectivity structure is, on average, independent of scale are623

called “scale-free” (Barabási, 2009); such networks have the same structure, on average,624

“all the way down.” As illustrated in Fig. 6, scale-free structures approximate hierarchies;625

“zooming in” to a node in a small-world or rich-club network typically reveals small-world626

or rich-club structure within the node. However, these networks allow the “horizontal”627

within-scale connections that a strict hierarchical organization would forbid. Given the628

prominence of scale-free small-world or rich-club organization in Nature, it is reasonable to629

ask whether RCA networks can exhibit such structure. In particular, it is reasonable to ask630

whether interactions between “simple” RCAs can lead to the emergence of more complex631

RCAs that interact among themselves in an approximately-hierarchical, rich-club network.632

We consider this question in one particular case in §4 below.633
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Fig. 6 : “Zooming in” to a node in a rich-club network typically reveals addi-634

tional small-world structure at smaller scales. Here the notation has been further635

simplified by eliding nodes altogether and only showing their connections.636

Replication followed by functional diversification ubiquitously increases local complexity in637

biological and social systems; processes ranging from gene duplication through organismal638

reproduction to the proliferation of divisions in corporate organizations exhibit this process.639

The simplest case, for an RCA, is to replicate part or all of the experience set X ; as640

will be shown below (§4.2), this operation is the key to building RCAs with memory.641

Let [(X1,X1), (G1,G1), D1, t1] be an RCA interacting with W via A1 and P1 kernels. Let642

[(X2,X2), (G2,G2), D2, A2, t2] be a dyad as shown in Fig. 4. Setting t1 = t2 = t, a new643

RCA whose “world” is the Cartesian product W × X2 can be constructed by taking the644

Cartesian products of the sets X1 and X2 and G1 and G2 respectively, as illustrated in645

Fig. 7, and defining product σ-algebras of X1 and X2 and G1 and G2 respectively. If all the646

kernels are left fixed, these product operations change nothing; they merely put the the647

original RCA and the dyad “side by side” in the new, combined RCA. We can, however,648

create an RCA with qualitatively new behavior by redefining one or more of the kernels;649

the “combination” process in this case significantly alters the behavior of one or both of the650

RCAs being “combined.” For example, we can specify a new punctual kernel D′

2 that acts651

on theX1 component instead of theX2 component ofX1×X2, i.e. D
′

2 : X1 → G2. Consider,652

for example, the RCA that results if D2 is replaced by a kernel D′

2 = DC that simply copies,653

at each t, the current value x1 of X1 to G2. If the kernel A2 is set to the Identity I, the654

value x1 will be copied, by A2, back to X2 on each cycle, as shown in Fig. 7. In this case,655

the experience of the “combined” CA at each t has two components: the current value of656

x1 and the previous value of x1, now “stored” as the value x2. This “copying” construction657

will be used repeatedly in §4 below to construct agents with progressively more complex658

memories. Note that for these memories to be useful in the sense of affecting choices of659

action, the kernel D1 must be replaced by one that also depends on the “memory” X2.660
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Fig. 7 : A CA as shown in Fig. 1 and a dyad as shown in Fig. 3 can be661

“combined” to form a composite CA with a simple, one time-step short-term662

memory by replacing the decision kernel D2 of the dyad with a kernel DC that663

“copies” the state x1(t) to g2(t+1) and setting the action kernel A2 of the dyad664

to the Identity I. The notation can be simplified by eliding the explicit W ×X2665

to W and treating the I2 operation on G2 as a feedback operation “internal to”666

the RCA, as shown in the lower part of the figure. Note that the composite667
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CA produced by this “combination” process has qualitatively different behavior668

than either of the CAs that were combined to produce it.669

The construction shown in Fig. 7 suggests a general feature of RCA networks: asymmetric670

kernels characterize the interactions between typical RCAs and W , but also characterize671

“internal” interactions that give RCAs additional structure. Such kernels may lose infor-672

mation and hence “coarse-grain” experience. If RCA networks are indeed scale-free, one673

would expect asymmetric interactions to be the norm: wherever the RCA-of-interest to W674

boundary is drawn, the networks on both sides of the boundary would have asymmetric675

kernels and complex internal organization. If this is the case, the notion of combining ex-676

perienced qualia underlying classic statements of the “combination problem” by William677

James, Thomas Nagel and many others (for review, see Hoffman and Prakash, 2014) appears678

too limited. There is no reason, in general, to expect “lower-level” experiences to combine679

into “higher-level” experiences by Cartesian products. An initially diffuse, geometry-less680

experience of “red” and an initially color-less experience of “circle,” for example, can be681

combined to an experience of “red circle” only if the combination process forces the diffuse682

redness into the boundary defined by the circle. This is not a mere Cartesian product; the683

redness and the circularity are not merely overlaid or placed next to each other. While684

Cartesian products of experiences allow recovery of the individual component experiences685

intact; arbitrary operations on experiences do not. The “combination” operations of inter-686

est here instead introduce scale-dependent constraints of the type Polanyi (1968) shows are687

ubiquitous in biological systems (cf. Rosen, 1986; Pattee, 2001). Such constraints introduce688

qualitative novelty. Once the redness has been forced into the circular boundary, for exam-689

ple, its original diffuseness is not recoverable: the red circle is a qualitatively new construct.690

Asymmetric kernels, in general, render higher-level agents and their higher-level experiences691

irreducible. Human beings, for example, experience edges and faces, but early-visual edge692

detectors do not experience edges and “face detectors” in the Fusiform Face Area do not693

experience faces. von Uexküll (1957), Gibson (1979) and the embodied cognition movement694

have made this point previously; the present considerations provide a formal basis for it695

within the theoretical framework of ITP.696

3.3 Connectivity and fitness697

As noted in the Introduction, ITP was originally motivated by evolutionary game simula-698

tions showing that model organisms with perceptual systems sensitive only to fitness drove699

model organisms with veridical perceptual systems to extinction (Mark, Marion and Hoff-700

man, 2010). In these simulations, “fitness” was an arbitrarily-imposed function dependent701

on the states of both the model environment and the model organism. The assumption of702

conscious realism, however, requires that it be possible to regard the environment of any703

organism, i.e. of any agent, as itself an agent and hence itself subject to a fitness function.704

From a biological perspective, this is not an unreasonable requirement: the environments of705

all organisms are populated by other organisms, and organism - organism interactions, e.g.706
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predator - prey or host - pathogen interactions, are key determiners of fitness. In the case707

of human beings, the hypothesis that interactions with conspecifics are the primary de-708

terminant of fitness motivates the broadly-explanatory “social brain hypothesis” (Adolphs,709

2003, 2009; Dunbar, 2003; Dunbar and Shultz, 2007) and much of the field of evolutionary710

psychology. If interactions between agents determine fitness, however, it should be possible711

to derive a representation of fitness entirely within the CA formalism. As the minimiza-712

tion of variational free energy or Bayesian surprise has a natural interpretation in terms of713

maintenance of homeostasis (Friston, 2013; Friston, Levin, Sengupta and Pezzulo, 2015),714

the congruence between the CA and FEP frameworks discussed above also suggests that715

a fully-internal definition of fitness should be possible. Here we show that an intuitively-716

reasonable definition of fitness not only emerges naturally within the CA framework, but717

also corresponds to well-established notions of centrality in complex networks.718

The time parameter t characterizing a CA is, as noted earlier, not an “objective” time but719

rather an observer-specific, i.e. CA-specific time. The value of t is, therefore, intimately720

related to the fitness of the CA that it characterizes: a CA with a small value of t has not721

survived, i.e. not maintained homeostasis for very long by its own internal measure, while722

a CA with a large value of t has survived a long time. Hence it is reasonable to regard723

the value of t as a prima facie measure of fitness. As t is internal to the CA, this measure724

is internal to the CA framework. It is, however, not in general an intrinsic measure of725

fitness, as CAs in general do not include an explicit representation of the value of t within726

the experience space X . From a formal standpoint, t measures the number of executions727

of D. As D by definition executes whenever a new experience is received into X , the value728

of t effectively measures the number of inputs that a CA has received. To the extent that729

D selects non-null actions, the value of t also measures the number of outputs that a CA730

generates.731

From the intrinsic perspective, a particular RCA cannot identify the source of any particular732

input as discussed above; inputs can equivalently be attributed to one single W or to733

a collection of distinct other RCAs, one for each input. The value of t can, therefore,734

without loss of generality be regarded as measuring the number of input connections to735

other RCAs that an given RCA has. The same is clearly true for outputs: from the736

intrinsic perspective, each output may be passed to a distinct RCA, so t provides an upper737

bound on output connectivity. From the extrinsic perspective, the connectivity of any RCA738

network can be characterized; in this case the number of inputs or outputs passed along739

a directed connection can be considered a “connection strength” label. The value of t740

then corresponds to the sum of input connection strengths and bounds the sum of output741

connection strengths.742

We propose, therefore, that the “fitness” of an RCA within a fixed RCA network can743

simply be identified with its input connectivity viewed quantitatively, i.e. as a sum of744

connection-strength labels, from the extrinsic perspective. In this case, a new connection745

preserves homeostasis to the extent that it enables or facilitates future connections. A746

new connection that inhibits future connectivity, in contrast, disrupts homeostasis. In747

the limit, an RCA that ceases to interact altogether is “dead.” If the behavior of the748
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network is monitored over an extrinsic time parameter (e.g. a parameter that counts the749

total number of messages passed in the network), an RCA that stops sending or receiving750

messages is dead. The “fittest” RCAs are, in contrast, those that continue to send and751

receive messages, i.e. those that continue to interact with their neighbors, over the longest752

extrinsically-measured times. Among these, those RCAs that exchange messages at the753

highest frequencies for the longest are the most fit.754

For simple graphs, i.e. graphs with at most one edge between each pair of nodes, the755

“degree” of a node is the number of incident edges; the input and output degrees are the756

number of incoming and outgoing edges in a digraph (e.g. Diestel, 2010 or for specific757

applications to network theory, Börner, Sanyal and Vespignani, 2007). A node is “degree758

central” or has maximal “degree centrality” within a graph if it has the largest degree;759

nodes of lower degree have lower degree centrality. These notions can clearly be extended760

to labelled digraphs in which the labels indicate connection strength; here “degree” becomes761

the sum of connection strengths and a node is “degree central” if it has the highest total762

connection strength. Applying these notions to RCA networks with the above definition of763

fitness, the fitness of an RCA scales with its input degree, and hence with its input degree764

centrality. Note that a small number of high-strength connections can confer higher degree765

centrality and hence higher fitness than a large number of low-strength connections with766

these definitions.767

In an initially-random network that evolves subject to preferential attachment (Barabási768

and Albert, 1999), the connectivity of a node tends to increase in proportion to its existing769

connectivity; hence “the rich get richer” (the “Matthew Effect”; see Merton, 1968). As770

noted above, this drives the emergence of small-world structure, with the nodes with high-771

est total connectivity forming a “rich club” with high mutual connectivity. Nodes within772

the rich club clearly have high degree centrality; they also have high betweenness centrality,773

i.e. paths between non-rich nodes tend to traverse them (Colizza, Flammini, Serrano and774

Vespignani, 2006). The identification of connectivity with fitness is obviously quite natu-775

ral in this setting; the negative fitness consequences of isolation are correspondingly well776

documented (e.g. Steptoe, Shankar, Demakakos and Wardle, 2013).777

The identification of fitness with connectivity provides a straightforward solution to the778

“dark room” problem faced by uncertainty-minimization systems (e.g. Friston, Thornton779

and Clark, 2012). Dark rooms do not contain opportunities to create or maintain connec-780

tions; therefore fitness-optimizing systems can be expected to avoid them. This solution781

complements that of Friston, Thornton and Clark (2012), who emphasize the costs to782

homeostasis of remaining in a dark room. Here again, interactivity and maintenance of783

homeostasis are closely coupled.784

25



4 W from the intrinsic perspective: Prediction and785

effective action786

4.1 How can non-veridical perceptions be useful?787

The fundamental question posed by the ITP is that of how non-veridical perceptions can788

be informative and hence useful to an organism. As noted in the Introduction, veridical789

perception is commonly regarded as “absolutely essential” for utility; non-veridical per-790

ceptions are considered to be illusions or errors (e.g. Pizlo, Sawada and Steinman, 2014).791

We show in this section that CAs that altogether lack veridical perception can nonetheless792

exhibit complex adaptive behavior, an outcome that is once again consonant with that793

obtained within the free-energy framework (Friston, 2010; 2013). We show, moreover, that794

constructing a CA capable of useful perception and action in a complex environment leads795

to predictions about both the organization of long-term memory and the structure of object796

representations that accord well with observations.797

For any particular RCA, the dynamical symmetries described in §3.1 are manifested by798

repeating patterns of states of X . The question of utility can, therefore, be formulated from799

the intrinsic perspective as the question of how an RCA can detect, and make decisions800

based on, repeating patterns of states of its own X . As the complexities of both the agent801

and the world increase, moreover, the probability of a complete experience - a full state802

of X - being repeated rapidly approaches zero. For agents such as human beings living in803

a human-like world, only particular aspects of experience are repeated. Such agents are804

faced with familiar problems, including perceptual figure-ground distinction, the inference805

of object persistence and hence object identity over time, correct categorization of objects806

and events, and context dependence (“contextuality” in the quantum theory and general807

systems literature; see e.g. Kitto, 2014). Our goal in this section is to show that the CA808

formalism provides a useful representation for investigating these and related questions. We809

show, in particular, that the limited syntax of the CA formalism is sufficient to implement810

memory, predictive coding, active inference, attention, categorization and planning. These811

functions emerge naturally, moreover, from asking what structure an RCA must have in812

order for its perceptions to be useful for guiding action within the constraints imposed by813

ITP. We emphasize that by “useful” we mean useful to the RCA from its own intrinsic814

perspective, e.g. useful as a guide to actions that lead to experiences that match its prior815

expectations (cf. Friston, 2010).816

We explicitly assume that the experiences of any RCA are determinate or “classical”: an817

RCA experiences just one state of X at each t. From the intrinsic perspective of the RCA,818

therefore, P is always apparently punctual regardless of its extrinsic-perspective statistical819

structure; from the intrinsic perspective, P specifies what the RCA does experience, not820

just what it could experience. The RCA selects, moreover, just one action to take at each821

t; hence D is effectively punctual, specifying what the RCA does do as opposed to merely822

what it could do, from the intrinsic perspective. This effective or apparent resolution of a823

probability distribution into a single chosen or experienced outcome is referred to as the824
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“collapse of the wavefunction” in quantum theory (for an accessible and thorough review,825

see Landsman, 2007) and is often associated with the operation of free will (reviewed by826

Fields, 2013a). We adopt this association of “collapse” with free will here: the RCA renders827

P punctual by choosing which of the possibilities offered by W to experience, and renders828

D punctual by choosing what to do in response. As is the case in quantum theory (Conway829

and Kochen, 2006), consistency between intrinsic and extrinsic perspectives requires that830

free will also be attributed to W ; hence we regard W , as an RCA, choosing how to respond831

to each action A taken by any RCA embedded in or interacting with it. All such choices832

are regarded as instantaneous. Consistency between internal and external perspectives833

requires, moreover, that all such choices are unpredictable in principle. An RCA with834

sufficient cognitive capabilities can, in particular, predict what it would choose, given its835

current state, to do in a particular circumstance, but cannot predict what it will do, i.e.836

what choice it will actually make, when that circumstance actually arises. This restriction837

on predictions is consonant with a recent demonstration that predicting an action requires,838

in general, greater computational resources than taking the action (Lloyd, 2012).839

4.2 Memory840

Repeating patterns of perceptions are only useful if they can be detected, learned from, and841

employed to influence action. Within the CA framework, “detecting” something involves842

awareness of that something; detecting something is therefore a state change in X . Noticing843

that a current perception repeats a past one, either wholly or in part, requires a memory844

of past perceptions and a means of comparing the current perception to remembered past845

perceptions. Both current and past perceptions are states in X , so it is natural to view846

their comparison as an operation on X . Using patterns of repeated perceptions to influence847

action requires, in turn, a representation of how perception affects action: an accessible,848

internal “model” of the D kernel. Consider, for example, an agent with a 1-bit X that849

experiences only “hungry” and “not hungry” and implements the simple operator, “eat if850

but only if hungry” as D. This agent has no representation, in X , of the action “eat”; hence851

it cannot associate hunger with eating, or eating with the relief of hunger. It has, in fact, no852

representation of any action at all, and therefore no knowledge that it has ever acted. There853

is no sense in which this agent can learn anything, from its own intrinsic perspective, about854

W or about its relationship to W . Learning about its relationship to the world requires, at855

minimum, an ability to experience its own actions, i.e. a representation of those actions in856

X . This is not possible if X has only one bit.857

The construction of a memory associating actions with their immediately-following per-858

ceptions is shown in Fig. 8a. Here as before, t increments when D executes. Note that859

while each within-row pairing (g(t), x(t)) provides a sample and hence a partial model of860

W ’s response to the choice of g(t), i.e. of the action of the composite kernel PA, each861

cross-row pairing (g(t), x(t− 1)) provides a sample and hence a partial model of the action862

of D. As noted earlier, no specific assumption about the units of t is made within the CA863

framework; hence the scope and complexity of the action - perception associations recorded864
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by this memory is determined entirely by the definition, within a particular model, of the865

decision kernel D.866

Fig. 8 : Constructing a memory in X for action - perception associations. a)867

The values x(t) and g(t) are recorded at each t into a linked list of ordered868

pairs (g(t), x(t)), in which the links associate values x(t − 1) to g(t) (diagonal869

arrows) and g(t) to x(t) (within rows). Each horizontal ordered pair is an870

instance of the action of the composed kernel PA, during which t is constant.871
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Each diagonally-linked pair is an instance of the action of D, concurrent with872

which t increments. b) The linked list in a) can also be represented as two873

simple lists of ordered pairs, one representing instances of actions of D and874

the other representing instances of actions of PA. c) The instance data in875

either list from b) can also be represented as a matrix in which each element876

counts the number of occurrences of an (x, g) pair. Here we illustrate just four877

possible values of x and four possible values of g. The pair (x1, g1) has occurred878

once, the pair (x2, g2) has occurred four times, etc. d) An RCA network that879

constructs memories XMD and XMPA that count instances of actions of D and880

PA respectively. Here XP is the space of possible percepts and its state xP is881

the current percept. The space XR is a short-term memory; its state xR is the882

immediately-preceding percept. The simplified notation introduced in Fig. 7 is883

used to represent the “feedback” kernels Copy, MD and MPA as internal to the884

composite RCA. The decision kernel D acts on the entire space X . The MD885

and MPA kernels are defined in the text.886

For the contents of memory to influence action, they must be accessible to D. They must,887

therefore, be encoded within X . Meeting this requirement within the constraints of the CA888

formalism requires regardingX as comprising three components, X = XP×XR×XM , where889

XP contains percepts, XR contains a copy of the most recent percept, andXM contains long-890

term memories of percept-action and action-percept associations. In this case, P becomes891

a Markovian kernel from W ×XP → XP and a punctual, forgetful Markovian kernel Copy892

is defined to map XP → XR as discussed above. The short-term memory XR allows the893

cross-row pairs in Fig. 8a, here written as (xP (t− 1), g(t)) to emphasize that xP (t− 1) is a894

percept generated by P , to each be represented as a pair (xR(t), g(t)) at a single time t. To895

be accessible toD, both these cross-row pairs and the within-row pairs (xP (t), g(t)), together896

with their occurrence counts as accumulated over multiple observations (Fig. 8c), must be897

represented completely within X . Constructing these representations requires copying the898

g(t) components of these pairs from G to X at each t, associating the copies with either899

xR(t) or xP (t) respectively, and accumulating the occurrence counts of the associated pairs900

as a function of t. We define components XMD and XMPA of the long-term memory XM to901

store triples (xR, gC, nD(xR, gC , T )) and (xP , gC, nPA(xP , gC, T )) respectively, where gC(t) is902

a copy of g(t) and nD(xR, gC, T ) and nPA(xP , gC , T ) are the accumulated occurrence counts903

of (xR, gC) and (xP , gC), respectively, as of the accumulation time T . This T is the sum of904

the counts stored in XMD and XMPA, which must be identical; the memory components905

XMD and XMPA capture, in other words, the data structure of Fig. 8c completely within906

X . To construct these memory components, we define punctual Markovian kernels MD :907

G × XR × XMD → XMD and MPA : G × XP × XMPA → XMPA (Fig. 8d) that, at each908

t, increment nD(xR, gC, T ) by one if xR and g co-occur at t and increment nPA(xP , gC , T )909

by one if xP and g co-occur at t, respectively. A similar procedure for updating “internal”910

states on each cycle of interaction with a Markov blanket is employed in Friston (2013).911

While we represent these memory-updating kernels as “feedback” operations in Fig. 8d912

and in figures to follow, they can equivalently be represented as acting from G to W ×X913
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as in the middle part of Fig. 7.914

The ratios nD(xR, gC, T )/T and nPA(xP , gC, T )/T are naturally interpreted as the frequen-915

cies with which the pairs (x, g) have occurred as either percept-action or action-percept916

associations, respectively, during the time of observation, i.e. between t = 0 and t = T . As917

these values appear as components of X , they can be considered to generate, through the918

action of some further operation depending only onX , “subjective” probabilities at t = T of919

percept-action or action-percept associations, respectively. We will abuse notation and con-920

sider the memories XMD and XMPA to contain not just the occurrence counts nD(xR, gC , T )921

and nPA(xP , gC , T ) but also the derived subjective probability distributions ProbD(x, g)|t=T922

and ProbPA(x, g)|t=T respectively. We note that these distributions ProbD(x, g)|t=T and923

ProbPA(x, g)|t=T are subjective probabilities for the RCA encoding them, from its own in-924

trinsic perspective. We have assumed that the kernels MD and MPA are punctual; to the925

extent that they are not, these subjective probability distributions are likely to be inaccu-926

rate as representations of the agent’s actual past actions and perceptions, respectively.927

It is important to emphasize that the memory data structure shown in Fig. 8c does not928

represent the value of the time counter t explicitly. A CA implementing this memory does929

not, therefore, directly experience the passage of time; such a CA only experiences the cur-930

rent values of accumulated frequencies of (x, g) pairs. However, because the current value T931

of t appears as the denominator in calculating the subjective probabilities ProbD(x, g)|t=T932

and ProbPA(x, g)|t=T , the extent to which these distributions approximate smoothness pro-933

vides an implicit, approximate representation of elapsed time. As we discuss in §4.4 below,934

this approximate representation of elapsed time has a natural interpretation in terms of the935

“precision” of the memories MD and MPA, as this term is employed by Friston (2010, 2013).936

The construction of a data structure explicitly representing goal-directed action sequences,937

and hence the relative temporal ordering of events within such sequences, within the CA938

framework is discussed in §4.5 below. Such a data structure is a minimal requirement for939

directly experienced duration in the CA framework.940

4.3 Predictive coding, goals and active inference941

Merely writing memories is, clearly, not enough: if memories are to be useful, it must also942

be possible to read them. Remembering previous percepts is, moreover, only useful if it943

is possible to compare them to the current percept. As noted earlier, exact replication944

of a previous percept is unlikely; hence utility in most circumstances requires quantitative945

comparisons, even if these are low-resolution or approximate. These can be accomplished946

by, for example, imposing a metric structure on XP and all memory components computed947

from XP . This allows asking not just how much but in what way a current percept differs948

from a remembered one. For now, we do this by assuming a vector space structure with949

a norm ||.|| (and therefore a metric δ(x, x′) = ||x − x′||) on XP . It is also convenient to950

assume a metric vector-space structure on G so that “similarity” between actions can be951

discussed.952
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A vector-space structure on XP enables talking about components of experience, which953

are naturally interpreted as basis vectors. Given a complete basis {ξi} for XP , which for954

simplicity is taken to be orthonormal, any percept xP can be written as
∑

i αiξi, where the955

coefficients αi are limited to some finite resolution, and hence the vectors are limited to956

approximate normalization, to preserve a finite representation. The distance between two957

percepts xP =
∑

i αiξi and yP =
∑

i βiξi can be defined as the distance δ(xP , yP ).958

To construct this vector space structure, it is useful to think of experiences in terms of959

“degrees of freedom” in the physicist’s sense (“macroscopic variables” or “order parame-960

ters” in other literatures), i.e. in terms of properties of experience that can change in some961

detectable way along some one or more particular dimensions. A stationary point of light962

in the visual field, for example, may have degrees of freedom including apparent position,963

color and brightness. Describing a particular experienced state requires specifying a par-964

ticular value for each of these degrees of freedom; in the case of a stationary point of light,965

these may include x, y and z values in some spatial coordinate system and intensities Ired,966

Igreen and Iblue in a red-green-blue color space. Describing a sample of experiences requires967

specifying the probabilities of each value of each degree of freedom within the sample, e.g.968

the probabilities for each possible value of x, y, z, Ired, Igreen and Iblue in a sample of969

stationary point-of-light experiences. A vector in the space XP is then a particular combi-970

nation of values of the degrees of freedom that characterize the experiences in X . A basis971

vector ξi of XP corresponds, therefore, to a particular value of one degree of freedom, e.g.972

a particular value x = 1 m or Ired = 0.1 lux. The coefficient αi of a basis vector ξi is973

naturally interpreted as the “amount” or “extent” to which ξi is present in the percept;974

again borrowing terminology from physics, we refer to these coefficients as amplitudes. If975

αi is the amplitude of the basis vector ξi representing a length of 1 m, for example, then the976

value of αi represents the extent to which a percept indicates an object having a length of 1977

m. It is, moreover, natural to restrict the values of the amplitudes to [0, 1] and to interpret978

the amplitude αi of the basis vector ξi in the vector representation of a percept xP as the979

probability that the component ξi contributes to xP . This interpretation of basis vectors980

as representing values of degrees of freedom and amplitudes as representing probabilities is981

the usual interpretation for real Hilbert spaces in physics (the probability is the amplitude982

squared in the more typical complex Hilbert spaces).983

The basis chosen for XP determines the bases for XR, XMD and XMPA. It must, moreover,984

be assumed that elements of these latter components of X are experientially tagged as such.985

An element xR in XR must, for example, be experienced differently from the element xP in986

XP of which it is a copy; without such an experiential difference, previous, i.e. remembered987

and current percepts cannot be distinguished as such from the intrinsic perspective. The988

existence of such experiential “tags” distinguishing memory components is a prediction of989

the current approach, which places all memory components on which decisions implemented990

by D can depend within the space X of experiences. Models in which some or all compo-991

nents of memory are implicit, e.g. encoded in the structure of a decision operator, require992

no such experiential tags for the implicit components. It is interesting in this regard that993

humans experientially distinguish between perception and imagination (a memory-driven994
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function), that this “reality monitoring” capability appears to be highly but not exclusively995

localized to rostral prefrontal cortex, and that disruption of this capability correlates with996

psychosis (Simons, Gilbert, Henson and Fletcher, 2008; Burgess and Wu, 2013; Cannon,997

2015). Humans also experientially distinguish short-term “working” memories from long-998

term memories. We predict that specific monitoring capabilities provide the experiential999

distinctions between short- (e.g. XR) and long-term (e.g. XMD and XMPA) memories and1000

distinguish functionally-distinct long-term memory components from each other. From a1001

formal standpoint, such distinguishing tags can be considered to be additional elements in1002

each vector in each of the derived vector spaces; while such tags play no explicit role in the1003

processing described below, their existence will be assumed.1004

As the memories XMD and XMPA and hence the conditional probability distributions1005

ProbD(x(t), g(t)|x(t−1), g(t−1)) and ProbPA(x(t), g(t)|x(t−1), g(t−1)) contain informa-1006

tion about the observer’s entire experience of the world, they enable differential responses1007

to xR − g or g− xP pairings that evoke different degrees of “surprise” by either confirming1008

or disconfirming previous associations to different extents. We note that the term ‘surprise’1009

is being used here in its informal sense of an experienced departure from expectations, not1010

in the technical sense employed by Friston (2010; 2013; see also Friston et al., 2015; Fris-1011

ton et al., 2016) to refer to an event that causes or threatens to cause a departure from1012

homeostasis and hence has negative consequences for fitness. To implement such differen-1013

tial responses to surprise, it is natural to choose functions for updating these conditional1014

probability distributions that depend on the vector distance(s) between the percept xR (for1015

ProbD(x(t), g(t)|x(t− 1), g(t− 1))) or xP (for ProbPA(x(t), g(t)|x(t− 1), g(t− 1))) and the1016

percept(s) previously associated, within XMD and XMPA respectively, with g. Functions1017

can clearly chosen that either enhance or suppress memories of surprising events. This1018

generalization requires no additional components or elements within X ; hence it enhances1019

function without altering the architecture.1020

The simplest possible action is no action: the agent merely observes the world. The extremal1021

outcomes of such observation are on the one hand James’ “blooming, buzzing confusion,” i.e.1022

a completely random xP (t), and on the other stasis, a fixed and invariant xP (t). Memory is1023

obviously useless in either case; indeed, the latter corresponds to the “dark room” situation1024

discussed above. Memory becomes useful if a world on which no action is taken generates1025

some number of the possible percepts significantly more often than the others. The same1026

is true in the case of any other constantly-repeated action. It is equivalent to say: any1027

action which, when repeated indefinitely, is followed by either random or static percepts1028

is a useless action to take. Such an action has no “epistemic value” in the sense used by1029

Friston et al. (2015). Randomness and stasis may be useful as components of experience -1030

indeed as discussed below, stasis is a necessary component of useful experience - but only1031

when embedded in non-random, non-static contexts. Let us assume, therefore, that RCAs1032

of interest are embedded in W s that generate non-random, non-static percepts in response1033

to all actions. Note that this assumption is consistent with ITP: it does not require either1034

P or A to respect the causal structure of W .1035

In a non-random, non-static world, the memories XMD and XMPA provide a basis for1036
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predictive coding: the probability assigned to an action g at t+1 can depend on the vector1037

difference between the current percept xP (t) and previous percepts either immediately-1038

antecedent or immediately-consequence to actions like g. A percept xP (t) can, in this case,1039

“predict” an action g(t + 1) that is “expected,” on the basis of the probabilities stored1040

in XMPA, to result in a subsequent percept xP (t + 1) that is either similar or dissimilar1041

to xP (t). Assigning high probabilities to actions at t + 1 expected to result in percepts1042

similar to xP (t) is implicitly “evaluating” xP (t) as in some sense “good” or “desirable,”1043

while assigning low probabilities to actions at t+1 expected to result in percepts similar to1044

xP (t) is implicitly evaluating xP (t) as in some sense bad or undesirable. These operational1045

senses of “good” and “bad” percepts are consistent with the senses of “good” and “bad”1046

percepts as enhancing or threatening the maintenance of homeostasis employed by Friston1047

(2010; 2013). A “bad” experience in this operational sense is a outcome that an agent1048

did not expect to experience, i.e. a stressor such as being hungry or poor, on the basis1049

of the implicit “model” of W encoded by the probability distributions contained in the1050

memories XMD and XMPA. In the limit, a maximally “bad” experience is one that violates1051

the fundamental expectation that experiences will continue that is encoded by all non-1052

zero values of the subjective probabilities ProbD(x, g)|t=T and ProbPA(x, g)|t=T ; such an1053

experience destroys connectivity between the agent in question and the surrounding RCA1054

network (i.e. the agent’s W ), setting the agent’s fitness to zero and corresponding to the1055

“death” of the agent as discussed in §3.3 above.1056

This evaluative function can be made explicit by representing it as a distinct operation. To1057

do this, we add a further memory component XE to X . To allow for the possibility that1058

an observer has “innate” biases toward or against particular percepts, we consider XE to1059

comprise two probability distributions, Probgood(xP ) and Probbad(xP ), with a priori values1060

fixed at t = 0. Such innate evaluation biases can be considered to be innate “preferences”1061

or “beliefs” as they often are in the infant-cognition literature (e.g. Baillargeon, 2008;1062

Watson, Robbins and Best, 2014). We represent the evaluation operation E as having two1063

components E = (Egood, Ebad), where Egood is a punctual kernel XP × XR × E → E that1064

updates Probgood(xP ) at each t and Ebad is a punctual kernel XP × XR × XE → XE that1065

updates Probbad(xP ) at each t. For simplicity, we assume that Egood increases Probgood(xP )1066

by a factor≥ 1 that approaches unity as Probgood(xP ) → 1 whenever both Probgood(xP (t)) >1067

0 and Probgood(xR(t)) > 0 and that Ebad increases Probbad(xP ) by a factor with similar1068

behavior whenever both Probbad(xP (t)) > 0 and Probbad(xR(t)) > 0. This E effectively1069

implements the heuristic: an experience is remembered as better if it is followed by a good1070

experience, and remembered as worse if it is followed by a bad experience. Note that while1071

this heuristic is consistent with the association of “good” and “bad” with maintaining or1072

not maintaining either homeostasis or connectivity as discussed above, it also allows a1073

given xP to be both probably good and probably bad, a not-unrealistic situation. This1074

additional structure on X is summarized in Fig. 9. Extending the evaluative process from1075

the scalar representation provided by these probabilities to a multidimensional, i.e. vector,1076

representation costs memory and kernel complexity but does not change the architecture.1077
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Fig. 9 : Adding memories for evaluations of percepts (XE) and for a current1078

goal (XG) to Fig. 7d. Connections to W have been elided for clarity.1079

Evaluating percepts implicitly evaluates the actions that are followed by those percepts;1080

this implicit transfer of estimated “good” or “bad” value from percepts to actions is now1081

implemented by D. A “rational” D, for example, would assign high probabilities to actions1082

g that are associated in XMPA with subsequent percepts that have high valuations in XE.1083

If W is such that the relative ranking of percepts by value changes only slowly with t,1084

relatively highly- and lowly-ranked percepts can be considered to be positive and negative1085

“goals” respectively. As Friston (2010, 2013) has emphasized, goals are effectively long-term1086

expectations to which an uncertainty-minimizing agent attempts to match perceptions;1087

Friston and colleagues call acting so as to match perceptions to goals “active inference.”1088

Within the CA framework, the minimal functional architecture required for active inference1089

is that shown in Fig. 9. Here a memory component XG holds the current goal; it is1090

populated by a punctual, forgetful kernel SG acting on XE . While SG can be taken to1091

choose percepts of high value as goals, its specific action can be left open. Note than in this1092

architecture, incremental adjustments of the “world model” XMPA and “self model” XD1093

are made in parallel with active inference: expectations are modified to fit perceptions even1094

when actions are taken to modify perceptions to fit expectations. Note also that placing1095

the evaluation and goal memories XE and XG within the experience space X is predicting1096

that the contents of these memories are both experienced and experienced as distinct, as1097

they indeed are in neurotypical humans. While the specific mechanisms implementing the1098

experiential distinction between these memory components remains uncharacterized, the1099

present framework predicts that such mechanisms exist.1100

By iteratively constructing representations of the antecedents and consequences of actions,1101

the kernels MD and MPA implement a simple kind of learning. The operator E similarly1102
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implements a simple form of evaluative feedback. The action choices made by D can,1103

therefore, progressively improve with experience. It is important to emphasize that MD,1104

MPA, E, SG and D are all by assumption homogeneous kernels. What changes as the1105

system learns is not the choice function D, but the contents of the data structures – the1106

memories XMD, XMPA, XE and XG – that serve as ancillary inputs to D. The “knowledge”1107

of an RCA with this architecture is, therefore, entirely explicit. This is marked contrast1108

to typical neural-network models, including recent “deep learning” models (for a recent1109

review, see Schmidhuber, 2015), in which learning is entirely implicit and the decision rules1110

learned are notoriously hard to reverse engineer. It is worth noting that standard neural-1111

network models have no intrinsic perspective; as emphasized earlier, it is the requirement1112

that an RCA learns about W from its own intrinsic perspective that forces what is learned1113

to be made explicit in a memory located in X , i.e. in a memory encoding contents that1114

are experienced - but are not necessarily reportable - by the RCA. While the kernels MD,1115

MPA, E, SG, as well as others to be introduced below, that populate explicit memories1116

can, together with the decision kernel D be considered to encode implicit memories in the1117

current model, the assumption that all such kernels are homogeneous implies that these1118

implicit memories are not loci of learning. The kinds of “practised skill” memories that1119

are canonically regarded as implicit are most naturally modelled as structures, e.g. fixed1120

or fully-automatized learned action patterns, within the action space G in the current1121

framework; an exploration of such structures are developed within G is beyond the present1122

scope.1123

It is important to note that whether D is “rational” in the sense of favoring actions that re-1124

sult in “good” outcomes, and hence the extent to which the choices favored by D “improve”1125

with experience, is left open within the architecture. If W is such that “good” choices cor-1126

relate with the acquisition of resources required for survival, a basic orientation or “drive”1127

toward increasing the average subjective valuation of “good” percepts can be expected to1128

emerge in a population of agents whenever the required resources are scarce. Friston has1129

argued that predictability of experience is itself the primary resource that organisms seek1130

to maximize, and that the drive to pursue and acquire external resources can be under-1131

stood in terms of maintaining the predictability of experiences that facilitate or enhance1132

the maintenance of physiological homeostasis (Friston, 2010; 2013; Friston, Thornton and1133

Clark, 2012). Reducing the uncertainty of experiences from a large environment requires1134

extensive sampling of the environment’s behaviors and hence active exploration; effective1135

agents in a large W can, therefore, be expected to display a “curious rationality” that1136

maintains homeostasis while devoting significant energy to active exploration and learning1137

(reviewed by Gottlieb, Oudeyer, Lopes and Baranes, 2013). Friston et al. (2015; 2016)1138

make a similar point: the minimization of expected surprise in the strict sense of departure1139

from homeostasis (i.e. the minimization of variational free energy) contingent upon remem-1140

bered action-perception associations can always be expressed as a mixture of “epistemic”1141

and “pragmatic” value. The pragmatic value is the expected outcome according to prior1142

preferences, i.e. “good” or “bad” evaluations, while the epistemic value is the utility of the1143

action for learning, i.e. reducing the potential for uncertainty or surprise in the future. This1144

resolution of uncertainty through active sampling is at the heart of many active inference1145
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schemes and arises naturally in any model in which the agent expects to occupy the states1146

it prefers.1147

4.4 Reference frames and attention1148

While defining expectations over percepts can be expected to be useful in some circum-1149

stances, many aspects of realistic behavior require defining and acting on expectations1150

defined over individual or small subsets of components of percepts. The memories XMD1151

and XMPA together provide the data needed to allow individual component - action as-1152

sociations to be computed; the memory XE similarly provides the data needed to allow1153

individual component valuations to be computed. Let XC and XEC be memories that store1154

conditional probability distributions and evaluations, respectively, of individual components1155

of percepts. To define XC , note that the xR−g and g−xP associations stored in XMD and1156

XMPA respectively allow each action g to be viewed as a relation {(xR, xP )} implemented1157

by PA. Expressing these percepts as vectors xR(t) =
∑

i αi(t)ξi and xP (t) =
∑

i βi(t)ξi,1158

we can view the action of g on the component ξi at t as gξi(t) : αi(t) 7→ βi(t). Each g1159

can, in other words, be viewed as increasing or decreasing the amplitude of each percep-1160

tual component ξi from one percept to the next. As it is natural to view amplitudes as1161

probabilities of occurrence as discussed above, each g can be viewed as increasing or de-1162

creasing the probability of each perceptual component ξi from one percept (i.e. value of1163

t) to the next. The memory XC can, therefore, be viewed as storing t-indexed conditional1164

probabilities Probt(ξi|g, Probt−1(ξi)) of perceptual components given actions. To update1165

the distribution of Probt(ξi|g, Probt−1(ξi)) as a function of t, we define a punctual kernel1166

C as a map XMD × XMPA × XC → XC . Subject to the constraint that all probabilities1167

remain normalized, this map can in principle implement any arbitrary updating function.1168

The memory XEC containing component valuations may be constructed from XE in a sim-1169

ilar fashion, by defining punctual, forgetful kernels ECgood and ECbad that map XE →1170

XEC . The kernels ECgood and ECbad assign, respectively, “good” valuations to components1171

strongly represented in “good” percepts and “bad” valuations to components strongly rep-1172

resented in “bad” percepts. A suitable function for each would assign to each component1173

ξi the average valuation of percepts xP in which the coefficient αi of ξi is greater than1174

some specified threshold. With additional memory, this mechanism can be extended to1175

assign values to (finite ranges of) amplitude values of components. Note that component1176

valuations constructed in this way are in an important sense context-free; representing com-1177

ponent valuations conditioned on the valuations of other components requires both more1178

memory and more complex kernels.1179

The memory components XC and XEC provide the “background knowledge” required for1180

component-directed as opposed to entire-percept directed actions. What remains to be1181

constructed is a process of selecting a component on which to act, and a second component1182

with respect to which the action is taken. Consonant with current usage in physics (e.g.1183

Bartlett, Rudolph and Spekkens, 2007), we refer to this second, context-setting component1184

as a reference frame for the action. Specifying a reference frame is specifying what does1185
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not change when an action is taken; hence reference frames provide the basis for specifying1186

what does change. Reference frames provide, in other words, the necessary stasis with1187

respect to which change is perceptible. Measurement devices such as meter sticks provide1188

the canonical example: a measurement made with a meter stick is only meaningful if one1189

assumes that the actions involved in making the measurement do not change the length1190

of a meter stick. More broadly, any context in which observations are made, whether a1191

particular laboratory set-up or an everyday scene, is meaningful as a context only if it1192

itself does change as a result of making the observation. A reference frame is, therefore, a1193

stipulated solution to the frame problem, the problem of specifying what does not change1194

as a result of an action (McCarthy and Hayes, 1969; reviewed by Fields, 2013b). Such1195

stipulations are inherently fragile and defeasible: a context that does observably change,1196

like a “meter stick” with an observably context-dependent length, ceases to be a reference1197

frame as soon as its variation is detected. Stipulated reference frames are, nonetheless,1198

useful solutions to the frame problem to the extent that they enable successful behavior in1199

the niche of the agent employing them. Absent a level of control over the environment that1200

ITP forbids, they are the only kinds of reference frames available.1201

While the frame problem has a long history in AI, its impact on cognitive science more1202

generally has been primarily philosophical (see, e.g. the contributions to Pylyshyn (1987)1203

and Ford and Pylyshyn (1996)). The question of how human perceivers identify contexts1204

as opposed to objects or events and how they detect changes in context have received little1205

direct investigation. The current model predicts that contexts are defined constructively1206

by the activation of discrete reference frames that impose expectations of constancy and1207

limit attention to features expected to remain constant. Experimental demonstrations of1208

change-blindness (reviewed by Simons and Ambinder, 2005) show that such limitations of1209

attention exist. Virtual reality methods provide opportunities to experimentally manipulate1210

context identification, and hence to probe the specific reference frames employed to identify1211

contexts, in ways that remain largely unexplored.1212

For complex organisms, the most important reference frame is arguably the experienced self,1213

generally including one or more distinguishable components of the body. This experienced1214

self reference frame comprises a collection of components of experience that do not change1215

during some, most or even all actions. The experienced self as a reference frame appears to1216

be innate in humans (e.g. Rochat, 2012) and may be innate in higher animals generally. It is1217

with respect to the experienced self as a reference frame that infants learn their capabilities1218

for actions as bodily motions and for social interactions as communications with others (e.g.1219

von Hofsten, 2007). Actions of or on the body, e.g. moving a limb, require that other parts1220

of the experienced self, e.g. the mass and shape of the limb and its point of connection1221

to the rest of the body, remain fixed to serve as the reference frame for the action. As1222

the body grows and develops, its representation must be updated to compensate for these1223

changes if its function as a reference frame is to be preserved. The experienced self reference1224

frame is readily extensible to tools, vehicles, and fully-virtual avatars in telepresence and1225

virtual-reality applications, and is readily manipulated in the laboratory. Disruptions of the1226

experienced self as a reference frame present as pathologies ranging from schizophrenia to1227
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anosognosia. These latter provide a clinical window into the human implementation of the1228

bodily and emotive self as a fusion of interoceptive and perceptual inputs (e.g. Craig, 2010;1229

Seth, 2013) and of the cognitive self as a fusion of memory-access and executive functions1230

that develops gradually from infancy to early adulthood (e.g. Simons, Henson, Gilbert and1231

Fletcher, 2008; Metzinger, 2011; Hohwy, 2016).1232

Selecting a particular component of a percept on which to act and another component1233

or components, such as the experienced self or the experienced self in some perceived1234

surroundings, to serve as a fixed context for an action is an act of attention. The selected1235

components must, moreover, remain subjects of attention throughout the action. Any1236

agent capable of attending to some component of an ongoing scene must also, however,1237

be capable of switching attention to a different component if something unexpected and1238

important happens. Attention requires, therefore, not just a decision about what to attend1239

to, but also a decision about whether to maintain or switch attentional focus. To meet these1240

requirements, we introduce an “attentional workspace” XF , a memory that contains a goal-1241

dependent focus of attention ξi, a focus-dependent reference frame ξj and a time counter1242

tF that measures the duration of an attentional episode. We also define an attentional1243

action space GF containing two actions, ‘switch’ and ‘maintain’ that alter or preserve the1244

attentional focus, respectively, and a forgetful punctual kernel DF : XP ×XR×XE×XG →1245

GF that selects gF = ‘switch’ at t if the valuation of xP (t) differs from that of xR(t) by1246

some specified threshold and selects gF = ‘maintain’ otherwise. These elements of GF1247

correspond to actions AF on the workspace XF , as shown in Fig. 10a. The action AFm1248

selected by gF = ‘maintain’ only increments tF . The action AFs selected by gF = ‘switch’1249

selects a new focus of attention ξk, a new reference frame ξl and resets tF to zero. We1250

represent this action as a forgetful punctual kernel AFs : XP × XG × XC × XCE → XF .1251

How this attention-switching kernel is defined has a potentially large impact on the behavior1252

of the RCA whose attentional workspace XF it affects. A rational AFs could be expected1253

to select a component ξi on which to focus that had a relatively large amplitude αi in1254

both the current percept xP and a high-value goal and a reference frame ξj, also with a1255

relatively large amplitude in both xP and the goal, that was affected in the past primarily1256

by actions that did not affect ξi. While the valuation of the attentional focus ξi may be1257

“bad,” a rational AFs would select a reference frame ξj with a “good” or at least not “bad”1258

valuation, as this amplitude of this component is meant to be kept fixed in subsequent1259

interactions with W . A rational D kernel acting on the workspace XF would then choose1260

actions g that, in the past as recorded in XC , moved the amplitude of xi in the direction of1261

its value in the chosen goal state while keeping the amplitude of xj fixed. As XC , XEC and1262

XF are updated one cycle behind XMD, XMPA, XE and XG and hence two cycles behind1263

XP , the kernel D must always work with expectation and valuation information that is1264

slightly out-of-date.1265
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Fig. 10 : a) Kernels that maintain or switch attentional focus. b) Additions to1266

Fig. 9 required to support attention. Connections to W are again elided for1267

clarity.1268

The structure of and operations within the experiential space X required for an atten-1269

tional system are summarized in Fig. 10b. Selecting a new component for attention and1270

maintaining attention on a previously-selected component are competitive processes in this1271

architecture, as they are in humans (reviewed by Vossel, Geng and Fink, 2014). When1272

top-down goals and expectations dominate and hence the dorsal attention system controls1273

perceptual processing, the salience of goal-irrelevant stimuli is reduced; a switch to vigilance1274

and hence ventral attentional control, in contrast, reduces the salience of goal-relevant stim-1275

uli. Top-down, dorsal attentional dominance facilitates exploration and information gath-1276

ering, while bottom-up, ventral attentional dominance facilitates threat avoidance. This1277

attention switch can be incorporated into predictive coding and active inference models1278

using the concept of “precision” for both expectations and percepts; high-precision expec-1279

tations dominate low-precision percepts and vice-versa (Friston, 2010; 2013). Precision is1280

effectively a measure of reliability based on prior experiences and is hence a second-order1281

expectation that must be learned by refining an a priori bias as discussed above. Predic-1282

tive coding networks modulated by estimated precision have been shown to describe the1283

cellular-scale connection architecture of cortical minicolumns (Bastos et al., 2012) as well1284

as the modular connection architectures of motor (Shipp, Adams and Friston, 2013) and1285

visual (Kanai, Komura, Shipp and Friston, 2015) processing (see also Adams, Friston and1286

Bastos (2015) for an overview of these results). As noted earlier, the smoothness of stored1287

probability distributions provides a natural estimate of the number of experiences that have1288

contributed to them and hence their reliability. A rational switching function can be ex-1289

pected to favor high-reliability expectations and disfavor low-reliability expectations, and1290

hence to implement a precision-based modulation of attention.1291

Extending the system shown in Fig. 10b to multiple focus and/or reference components1292

costs memory and processing complexity, but does not change the architecture. It is inter-1293
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esting to note that within this architecture, all change is implicitly attributed by the agent1294

to the action taken; from the agent’s intrinsic perspective, its actions change the state of its1295

attentional focus with respect to its reference frame. For the system to behave effectively,1296

the world W must be such that this attribution of observed changes to executed actions is1297

satisficing in W . The world must not, in other words, surprise the agent so often that the1298

agent’s sense that actions have predictable consequences becomes impossible to maintain.1299

The world must not, in other words, exhibit either overall randomness or overall stasis as1300

noted earlier.1301

It is worth re-emphasizing, moreover, that in the CA framework X is a space of experi-1302

ences. Hence the RCA depicted in Fig. 10b is regarded as experiencing each state of its1303

highly-structured space X , including all those components on which its attention is not1304

focussed (the formalism leaves open the question of whether these components themselves1305

have unexperienced internal structure). It may, however, be “unconscious” of unattended1306

components in the sense in which this term is used in theories that associate consciousness1307

with relative amplification or attention (e.g. Baars, Franklin and Ramsoy, 2013; Dehaene,1308

Charles, King and Marti, 2014; Graziano, 2014). In general, how an RCA acts depends1309

on its attentional focus. Reporting what it is experiencing, e.g. to an investigator in a1310

laboratory or even to itself via a modality such as inner speech, is a specific kind of ac-1311

tion that requires a specific attentional focus. Whether the attentional focus required to1312

support a given form of reporting is achieved in any particular case or is even achievable1313

by a particular RCA is a matter of architecture, i.e. of how the memory-construction and1314

attentional-control kernels are defined. Agents that never report particular kinds of experi-1315

ences, or that never report experiences using a given modality such as inner speech (Heavey1316

and Hurlburt, 2008), are not only possible but to be expected within the CA framework.1317

Indeed the CA framework predicts that agents are typically aware of more than they can1318

report awareness of to an external observer or even to themselves. Agents are, in other1319

words, typically under-equipped with attentional resources, and hence unable to access some1320

or even much of their experience for behavioral reporting via any particular modality. Being1321

under-equipped for reporting experiences post hoc is unsurprising on evolutionary grounds;1322

indeed why human beings should engage in so much post hoc self-reporting via modalities1323

such as inner speech remains a mystery (Fields, 2002). As reportability by some observable1324

behavior remains the “gold standard” in assessments of awareness (e.g. Dehaene, Charles,1325

King and Marti, 2014), this strong and counter-intuitive prediction of the CA framework1326

can at present only be tested indirectly, e.g. using phenomena such as blindsight (re-1327

viewed by Overgaard, 2011). It raises the methodological question of whether “reporting”1328

of experiences by imaging methods such a fMRI, as employed by Boly, Sanders, Mashour1329

and Laureys (2013), for example, with otherwise-unresponsive coma patients, should be1330

regarded as evidence of awareness across the board.1331
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4.5 Remembering and planning action sequences1332

The attentional workspace XF defined above does not explicitly represent the action taken1333

at each t and so cannot support either memory for “cases” of successful action or plan-1334

ning. The most recently executed g is, however, available within XMD. A fixed-capacity1335

case memory can be regarded as a subjective probability distribution over possible cases,1336

where each case is a vector of fixed length lcase, the components of which are quadruples1337

(αiξi, βjξj, tF , g(tF )) with the percept components ξi, ξj and the amplitude βj fixed. A case1338

defined in this way provides a representation of how the amplitude αi of the attentional1339

focus ξi varies relative to the fixed amplitude βj of the reference frame ξj when subjected1340

to the sequence g(tF = 0) . . . g(tF = lcase) of actions. This definition formulates in lan-1341

guage compliant with ITP the concept of a case employed in the case-based reasoning and1342

planning literature (Riesbeck and Schank, 1989; Kolodner, 1993). It is also similar in both1343

role and scope to the concept of an “event file” introduced by Hommel (2004) to repre-1344

sent the temporal binding of perceptions with context-appropriate actions. Cases or event1345

files are effectively “snapshots” of active inference that show how a particular perceptual1346

input is processed given the attentional context in which it is received and the particular1347

expectations that it activates.1348

As an example, consider a sequence of actions involved in reaching for and grasping a coffee1349

cup. The immediate goal of the sequence is to grasp the coffee cup; we will ignore the1350

question of different grasps being needed for different subsequent actions. The target of1351

the sequence is a particular coffee cup that is visually identifiable by particular perceived1352

features, e.g. location, size, shape and color. The cup’s perceived size, shape and color do1353

not change as a result of the motion; hence their values can serve as the reference frame1354

that determines the cup’s identity. As the goal of the action sequence is to change the1355

perceived location of the coffee cup, its location cannot be included in the reference frame;1356

if it was, the cup would lose its identity when it was moved. The attentional workspace1357

XF , therefore, contains the variable perceived values of the positions of the cup and of the1358

reaching hand as foci and the fixed perceived values of the size, shape and color of the cup1359

as the reference frame. The recorded case contains, effectively, a sequence of “snapshots”1360

of the contents of XF : a time sequence of cup and hand position values, together with the1361

actions that produced them, relative to these fixed reference values. A memory Mcase for1362

such cases can be constructed using the counter-incrementing methods used to construct1363

XMD and XMPA above. As action sequences that are worth recording are typically those1364

that either satisfied goals or led to trouble, it is useful to construct each record in Mcase as1365

a 5-tuple [xP (tF = 0), E((xP (tF = 0)), xP (tF = lcase), E((xP (tF = lcase)), case(tF )], where1366

xP (tF = 0) and xP (tF = lcase) are the full percepts at the beginning and the end of case(tF )1367

respectively, and E((xP (tF = 0)) and E((xP (tF = lcase)) are their evaluations as recorded1368

in XE. This representation allows Mcase to be searched – i.e. kernels acting on Mcase to1369

depend upon – either the initial state and its evaluation or the final state and its evaluation.1370

Case memories constructed in this way are clearly combinatorially explosive; hence case-1371

based planning in systems with limited memory is necessarily heuristic, not exhaustive, a1372

condition widely recognized in the case-based planning literature.1373
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It is natural to interpret a set of one or more fixed components of experience, with respect1374

to which one or more other components of experience change when one or more sequences1375

of actions is executed as defining an effective or apparent object. Objects defined in this way1376

are collections of expectations, based on accumulated experience, about the co-occurrence1377

and co-variation under actions of particular values of particular experiential degrees of1378

freedom. Objects in this sense are effectively categories defined by fixed (i.e. reference) and1379

variable features together with sets of expected behaviors, i.e. changes in the amplitudes of1380

the variable features relative to the fixed features in response to actions. Hence such objects1381

are more properly considered to be object types as opposed to de re individuals. While1382

an agent may assume, as a useful heuristic, that an object category has only one member1383

and act on the basis of this assumption, consistency with ITP requires that nothing in1384

the agent’s experience can be sufficient to demonstrate that this is the case. Hence object1385

identity over time is ambiguous in principle in the ITP/CA framework. Objects defined in1386

this way play the role of “icons” on the ITP interface. As the number of recorded cases1387

involving actions that change the state of some object increase, its “icon” gains predictable1388

functionality and hence utility as a locus of behavior.1389

The present framework leaves open the question of whether any “object”-specifying ref-1390

erence frames are innate. It predicts, however, that any such reference frames, whether1391

innately specified or constructed from experience, will have low dimensionality compared1392

to the perceptual experiences that they help to interpret. Dramatic evidence for low di-1393

mensionality is provided by studies of two of the earliest-developing and ecologically most1394

crucial reference frames for humans, those that identify animacy and agency (reviewed by1395

Scholl and Tremoulet, 2000; Scholl and Gao, 2013; Fields, 2014). Indeed Gao, McCarthy1396

and Scholl (2010) have shown that a simple oriented “V” shape not only satisfies the typical1397

human visual criterion for agency detection, but distracts attention sufficiently to disrupt1398

performance in an object-tracking task. Human face-recognition criteria are similarly rudi-1399

mentary. Additional evidence for low reference-frame dimensionality is provided by the1400

kinds of categorization conflicts studied in the quantum cognition literature (reviewed e.g.1401

by Pothos and Busemeyer, 2013; Bruza, Kitto, Ramm and Sitbon, 2015), for example the1402

“Linda” problem. Here the “natural” reference frames, i.e. concepts or coherent sets of1403

expectations, do not exhibit classical compositionality; combining reference frames to repro-1404

duce the judgements made by subjects requires the use of complex “quantum” probability1405

amplitudes. Complex probabilities can, however, be represented by classical probabilities1406

in higher-dimensional spaces (e.g. Fuchs and Schack, 2013; see also Fields, 2016 for a less1407

formal discussion), consistent with attentional selection of a low-dimensional subspace to1408

serve as a reference frame. If “object”-specifying reference frames in fact encode fitness1409

information as ITP requires, one would expect a general inverse correlation between fitness1410

consequences and reference frame dimensionality. While both the global and local struc-1411

ture of the typical human category hierarchy have been investigated (reviewed by Martin,1412

2007; Keifer and Pulvermüller, 2012), neither the minimal functional content (i.e. dimen-1413

sionality) nor the fitness-dimensionality correlation of typical categories have been broadly1414

investgated.1415
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The components of the experienced self reference frame, taken together, constitute an1416

iconic object – the experienced self as a persistent embodied actor – in the above sense.1417

The features of the experienced self as persistent embodied actor that are employed as1418

fixed reference features with respect to which other features of the experienced self are1419

allowed to vary change only slowly and asynchronously as a function of time; it is this slow1420

and asynchronous change in reference features that allow the approximation of a persistent1421

experienced self (but see Klein, 2014 for a discussion of the sense of a persistent experienced1422

self in the presence of conflicting perceptual evidence). The conditions under which non-1423

self objects are represented as persistent over extended time, in particular across extended1424

periods of non-observation, have been subjected to surprisingly little direct experimental1425

investigation and are not well understood (e.g. Scholl, 2007; Fields, 2012). Both the1426

extensibility of the experienced self reference frame to incorporate otherwise non-self objects1427

discussed earlier and the sheer variety of pathologies of the experienced self, including1428

depersonalization syndromes (e.g. Debruyne, Portzky, Van den Eynde and Audenaert,1429

2009), suggest that the experienced self - non-self distinction is not constant for individual1430

human subjects and highly variable between subjects. This question cannot, unfortunately,1431

yet be addressed productively in non-human subjects.1432

With this concept of an iconic object, the functional difference between a case memory1433

Mcase and the event memories XMD and XMPA becomes clear: Mcase records sequences of1434

partial events in which, in each sequence, only the response to actions of the attentional1435

focus ξi and the lack of response to actions of the reference ξj are made explicit. Each case1436

in Mcase can, therefore, be thought of as imposing an implicit, goal-dependent criterion of1437

relevance on the actions it records.1438

Recording object-directed action sequences is useful to an agent because it enables previously-1439

successful sequences to be repeated and previously-unsuccessful sequences to be avoided.1440

Selecting a previously-recorded case from memory for execution under some similar cir-1441

cumstances is the simplest form of planning. Executing the action sequence recorded in a1442

remembered case requires, however, shortcutting the usual decision process D. Within the1443

architecture shown in Fig. 10, the simplest way to accomplish this is to associate a working1444

memory XW with the attentional focus XF , and to include in XW a control bit c on which1445

D depends. If c = 0, D is independent of the contents of XW and acts as in Fig. 9. If c = 1,1446

D selects the action g represented in XW . Populating XW requires two embedded agents,1447

as shown in Fig. 11. The first agent (Fig. 11a) selects a recorded case based on the current1448

percept, and sequentially copies the actions specified by that case into XW . The “world” of1449

this agent consists of XP , Mcase and XW ; its “perception” kernel selects the case from Mcase1450

for which the initial state is closest to the current percept xP , its “decision” kernel selects1451

records from this case in sequence and its “action” kernel writes the action g(tF ) specified1452

by the selected case into XW . The process executed by this agent requires a time step,1453

i.e. one increment of t. The second agent (Fig. 11b) has a switching function analogous1454

to the attention-switching dyad in Fig. 10a: it compares the current percept xP (t) to the1455

currently-selected case record, setting c = 1 when the case is initially selected and setting1456

c = 0 if the distance between the states of either the object or reference components of xP (t)1457
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and their states as specified by the currently-selected case record exceeds some threshold.1458

Setting c = 0 in response to such an expectation violation during case execution restores1459

D to its usual function. Maintaining temporal synchrony requires that the overall counter1460

t advances only when D executes as discussed above; this requirement can be met if D is1461

regarded as acting instantaneously when c = 1 and the action g to be selected is specified1462

by XW , i.e. when action is performed “automatically.” In this case interrupting execution1463

of a case must be regarded as requiring one time step, after which no action is selected.1464

Fig. 11 : a) Selection of a case and case-record for execution based on the current1465

percept. This action does not enable case execution. b) Enabling or disabling1466

case execution by setting or resetting the control bit c based on a comparison1467

of current and expected percepts during case execution.1468

The processes illustrated in Fig. 11 only execute a previous case verbatim. Interrupting1469

execution of a case initiates a search for a new case that is a better fit to the current per-1470

cept xP (t). A more intelligent case-based planner can be constructed by incorporating an1471

additional agent capable of modifying the currently-selected case record based on xP (t) and1472

information about previous component responses stored in XC . Such modification creates1473
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a new case, which is then recorded in Mcase A second natural extension would incorporate1474

a “meta” agent capable of comparing multiple cases to identify shared perception-action1475

dependencies. A case comparator of this kind is the minimal structure needed to recognize1476

relationships between events occurring in different orders or with different numbers of in-1477

tervening events; hence it is the minimal structure needed to implement a “temporal map”1478

as described by Balsam and Gallistel (2009).1479

5 Conclusion1480

We have shown three things in this paper. First, the CA formalism introduced by Hoffman1481

and Prakash (2014) is both powerful and non-trivial. Even “agents” comprising only a1482

handful of bits exhibit surprisingly complex behavior. A three-bit agent can implement a1483

Toffoli gate, so networks of three-bit agents can compute any computable function, and1484

can even do so reversibly. More intriguing are the hints that networks of simple agents1485

exhibit dynamical symmetries that also characterize geometry. This result comports well1486

with current efforts by physicists to derive the familiar geometry of spacetime from the1487

symmetries of information exchange between simple processing units (e.g. Tegmark, 2015).1488

We are currently working toward a full description of spacetime constructed entirely within1489

the CA framework.1490

We have, second, shown that concept of “fitness” as connectivity emerges naturally when1491

networks of interacting RCAs are considered. This fitness concept accords well with estab-1492

lished concepts of centrality developed in the theory of social and other complex networks.1493

By expressing fitness with the CA framework, we free ITP from any need to rely on an1494

externally-stipulated fitness function. Computational experiments to characterize the con-1495

ditions in which preferential attachment and hence high-connectivity individuals emerge in1496

networks of interacting RCAs are being designed.1497

Our third result is that networks of RCAs can, at least in principle, implement sophisticated1498

cognitive processes including attention, categorization and planning. This result fleshes out1499

the central concepts of ITP: that experience is an interface onto an ontologically-ambiguous1500

world, and that “objects” and “causal relations” are patterns of positive and negative cor-1501

relations between experiences. It highlights the critical role played by aspects of experience1502

that do not change, and hence serve as “context” or, more formally, reference frames rel-1503

ative to which aspects of experience that do change can be classified and analyzed. Here1504

again, our result comports well with recent work in physics, where with the rise of quantum1505

information theory, the roles of reference frames in defining what can and cannot be known1506

or communicated about a physical situation have taken on new prominence (e.g. Bartlett,1507

Rudolph and Spekkens, 2007). A substantial program of simulation development and test-1508

ing is clearly required to evaluate, in structured and eventually in open environments, the1509

formal models of memory, attention, categorization and planning developed here. The level1510

of complexity at which such models can feasibly be implemented remains unclear. We hope,1511

however, to be able to fully characterize the reference frames required to support relatively1512
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simple behaviors in relatively simple environments, and to use this information to formulate1513

predictions testable in more complex systems.1514

The CA framework is, as we have emphasized, a minimal formal framework for under-1515

standing cognition and agency. While debates about the structure and content of memory1516

- and implicitly, experience - have dominated cognitive science for decades (e.g. Gibson,1517

1979; Fodor and Pylyshyn, 1988; Anderson, 2003), these debates have generally been con-1518

ducted either informally or in the context of complex, conceptually open-ended modeling1519

paradigms. Our results, together with those of Friston and colleagues using the predictive1520

coding and adaptive inference framework, show that cognition and agency can be addressed1521

in conceptually very simple terms. The primary task of an organism in an environment1522

is to regulate its interactions with the environment, by behaving appropriately, in order1523

to maintain an environmental state conducive its own homeostasis. As Conant and Ashby1524

(1970) showed and Friston (2010; 2013) has significantly elaborated, effective regulation1525

of the environment requires a statistically well-founded model of the environment. Consis-1526

tency with ITP requires that such models treat the environment as open, in which case they1527

can be at best satisficing. The results obtained here, together with those of Friston (2013)1528

and Friston, Levin, Sengupta and Pezzulo (2015), offer an outline of how such models may1529

be constructed in a way that is consistent with ITP, but many details remain to be worked1530

out. A thorough treatment of both evolutionary and developmental processes from both1531

extrinsic and intrinsic perspectives is needed to understand the kinds of worlds W in which1532

complex networks of interdependent RCAs can be expected to appear.1533

We have largely deferred the question of motivation. As mentioned in §4.3 above, ratio-1534

nal agents exhibit curiosity and hence explore their environments to discover sources of1535

“good” experiences, which in a typical W may lie very near sources of “bad” experiences.1536

As Gottlieb, Oudeyer, Lopes and Baranes (2013) emphasize, however, rational agents do1537

not exhibit unlimited curiosity, as this can lead to expending all available resources at-1538

tempting to solve unsolvable problems or learn unlearnable information. Understanding1539

and modeling motivation requires not only a formal characterization of resources and their1540

use, but also a formal model of reward, its representation, and its roles in both extrinsic1541

and intrinsic motivation. The distinction between the “pragmatic” and “epistemic” values1542

of information (Friston et al., 2015) is useful here; the current framework models the effects1543

of this distinction in terms of attention switching, but not its origin. Both developmental1544

robotics (e.g. Cangelosi and Schlesinger, 2015) and the neuroscience of the reward system1545

(e.g. Berridge, and Kringelbach, 2013) provide empirical avenues to pursue in this regard.1546

We have also, and more importantly from an architectural perspective, deferred the task1547

of constructing a full theory of RCA networks and RCA combinations. Developing such1548

a theory will require addressing such questions as whether RCA networks can in general1549

be considered locally hierarchical, whether the action spaces G of complex RCAs require1550

structures, for example to represent fully automatized action patterns, analogous to the1551

structures in X described here, and how to explicitly define D kernels in complex RCAs. It1552

will also require understanding how the time counters (i.e. t parameters) of complex RCAs1553

relate to those of their component RCAs, a question that has been elided here by assuming1554
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that all processes “inside” X are synchronous. Answering such questions may well depend1555

on resolving at least some of the issues having to do with fitness and motivation mentioned1556

above. We expect, however, that their answers will shed light on such questions as whether1557

complex RCAs can in some cases be regarded as unaware of the experiences - e.g. the1558

percepts or memories - of their component RCAs and how the actions of complex RCAs1559

depend, or not, on the actions of their component RCAs.1560

As CAs and hence RCAs are intended, from the outset, to represent conscious agents, it1561

is natural to ask what the behavior of networks of RCAs can tell us about consciousness.1562

Here two results stand out. The first is that an agent cannot, without violating ITP,1563

distinguish the world outside of her experience from another conscious agent. While this1564

follows from the ontological principle of conscious realism of Hoffman and Prakash (2014),1565

it equally follows from the impossibility, within ITP, of determining that the “world” has1566

non-Markovian dynamics. The second is that agents can be expected to be aware of more1567

than they can report. This seems paradoxical if awareness is equated with reportability,1568

but makes sense when the attentional resources that would be required to enable reporting1569

of all experiences are taken into account.1570

While examining specific cases of successful and unsuccessful behavior in well-defined worlds1571

requires addressing the issues of motivation and multi-agent combination highlighted above,1572

two substantial conceptual issues stand out. The first is that the CA formalism, in contrast1573

to either standard neural network approaches or purely-functional cognitive modelling ap-1574

proaches, enforces by its structure a focus on what a constructed agent is being modelled1575

as experiencing. The CA formalism itself requires that the decision kernel D acts on the1576

space of experiences X ; hence whatever D acts on must be in X and therefore must be an1577

experience. Constructing complex memory structures in X in order to make them available1578

to D is, given this constraint, proposing the hypothesis that the contents of such struc-1579

tures are experienced. Experienced by whom? Here the second issue becomes relevant.1580

As discussed in §3.2, discussions of consciousness have often assumed, explicitly or more1581

typically implicitly, that “low-level” experiences combine in some straightforward way into1582

“higher-level” experiences. The phenomenal unity of ordinary, waking human experience1583

is assumed by many to indicate that there is only one relevant “level” of experience, the1584

level of the whole organism (or often, just its brain). With this assumption, proper com-1585

ponents of the human neurocognitive system cannot themselves be experiencers; that this1586

is the case is treated as axiomatic, for example, in Integrated Information Theory (Tononi1587

and Koch, 2015; see Cerullo, 2015 for a critique of this assumption in the IIT context).1588

If complex experiencers are networks of RCAs, however, this assumption cannot be cor-1589

rect: all RCAs, even the simplest ones, experience something. If complex experiencers are1590

networks of RCAs, there is also no reason to assume that “higher-level” experiences are in1591

any straightforward sense combinations of “lower-level” ones. Unless RCA combinations are1592

simple Cartesian products, high-level experiences will in general not be uniquely predictable1593

from low-level experiences or vice-versa. If complex experiencers are only approximately1594

hierarchical rich-club networks of RCAs, the assumption that experiences should in general1595

be straightforwardly combinatoric is almost certainly wrong.1596
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That said, it is worth re-emphasizing that the CA framework is not, and is not intended to1597

be, a theory of consciousness per se. The CA framework says nothing about the nature of1598

experience. It says nothing about qualia; it simply assumes that qualia exist, that agents1599

experience them, and that they can be tokened by elements of X . The CA framework is,1600

instead, a formal framework for modelling conscious agents and their interactions that en-1601

forces consistency with ITP. By itself, the CA framework is ontologically neutral, as is ITP.1602

When equipped with the ontological assumption of conscious realism, the CA framework1603

becomes at least prima facie consistent with ontological theories that take consciousness to1604

be an irreducible primitive. The role of the CA framework in expressing the assumptions1605

or results of such theories can be expected to depend on the details of their ontological1606

assumptions. Whether the CA framework fully captures the ontological assumptions of1607

existing theories that take consciousness to be fundamental, e.g. that of Faggin (2015),1608

remains to be determined.1609

In summary, the CA framework, and RCA networks in particular, provide both a highly-1610

constrained formal technology for representing cognition and a way of thinking about cogni-1611

tion that emphasizes experience and decisions based on experience. It directly implements1612

the ontological neutrality regarding the external world that is required by ITP. As results1613

from physics and other disciplines render näıve or even critical realism about perceived1614

objects and causal relations increasingly hard to sustain, this ability to model experience1615

and decision making with no supporting ontology will become increasingly critical for psy-1616

chology and for the biosciences in general.1617

Acknowledgements1618

The authors thank Federico Faggin and Robert Prentner for discussions of the ideas in this1619

paper and The Federico and Elvia Faggin Foundation for financial support. Thanks also1620

to the reviewers for their constructive comments.1621

References1622

Adams, R. A., Friston, K. J. and Bastos, A. M. (2015). Active inference, predictive coding1623

and cortical architecture. In M. F. Casanova and I. Opris (Eds) Recent Advances in the1624

Modular Organization of the Cortex. Berlin: Springer (pp. 97-121).1625

Adolphs, R. (2003). Cognitive neuroscience of human social behavior. Nature Reviews1626

Neuroscience 4, 165-178.1627

Adolphs, R. (2009). The social brain: Neural basis for social knowledge. Annual Review of1628

Psychology 60, 693-716.1629

Agrawal, H. (2002). Extreme self-organization in networks constructed from gene expression1630

data. Physical Review Letters 89, 268702.1631

48



Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence 149,1632

91-130.1633

Ashby, W. R. (1956). Introduction to Cybernetics. London: Chapman and Hall.1634

Aspect, A.,Dalibard, J. and Roger, G. (1982). Experimental test of Bell’s inequalities using1635

time-varying analyzers. Physical Review Letters 49, 1804-1807.1636

Baars, B. J., Franklin, S. and Ramsoy, T. Z. (2013). Global workspace dynamics: Cortical1637

“binding and propagation” enables conscious contents. Frontiers in Psychology 4, Article1638

# 200.1639

Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infants1640

physical reasoning. Perspectives on Psychological Science 3, 2-13.1641

Barabási, A.-L. (2009). Scale-free networks: A decade and beyond. Science 325, 412-413.1642

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science1643

286, 509-512.1644

Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: Understanding the cell’s func-1645

tional organization. Nature Reviews Genetics 5, 101-114.1646

Bartlett, S. D., Rudolph, T. and Spekkens, R. W. (2007). Reference frames, superselection1647

rules, and quantum information. Reviews of Modern Physics 79, 555-609.1648

Bassett, D. S. and Bullmore, E. (2006). Small world brain networks. The Neuroscientist1649

12, 512-523.1650

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P. and Friston, K. J.1651

(2012). Canonical microcircuits for predictive coding. Neuron 76, 695-711.1652

Bennett, B. M., Hoffman, D. D. and Prakash, C. (1989). Observer Mechanics: A Formal1653

Theory of Perception. Academic Press.1654

Berridge, K. C. and Kringelbach, M. L. (2013). Neuroscience of affect: brain mechanisms1655

of pleasure and displeasure. Current Opinion in Neurobiology 23, 294-303.1656

Boly, M., Sanders, R. D., Mashour, G. A. and Laureys, S. (2013). Consciousness and1657

responsiveness: Lessons from anaesthesia and the vegetative state. Current Opinion in1658

Anesthesiology 26, 444-449.1659

Börner, K., Sanyal, S. and Vespignani, A. (2007). Network science. Annual Review of1660

Information Science and Technology 41, 537-607.1661

Bruza, P. D., Kitto, K., Ramm, B. J. and Sitbon, L. (2015). A probabilistic framework1662

for analysing the compositionality of conceptual combinations. Journal of Mathematical1663

Psychology 67, 26-38.1664

Burgess, P. W. and Wu, H-C. (2013). Rostral prefrontal cortex (Brodmann area 10):1665

Metacognition in the brain. In D. T. Stuss and R. T. Knight (Eds.) Principles of Frontal1666

Lobe Function, 2nd Ed. New York: Oxford University Press (pp. 524-534).1667

49



Cangelosi, A. and Schlesinger, M. (2015). Developmental Robotics: From Babies to Robots.1668

Cambridge, MA: MIT Press.1669

Cannon, T. D. (2015). How schizophrenia develops: Cognitive and brain mechanisms1670

underlying onset of psychosis. Trends in Cognitive Science 19, 744-756.1671

Cerullo, M. A. (2015). The problem with Phi: A critique of Integrated Information Theory.1672

PLoS Comptational Biology 11, e1004286.1673

Colizza, V., Flammini, A., Serrano, M. A. and Vespignani, A. (2006). Detecting rich-club1674

ordering in complex networks. Nature Physics 2, 110-115.1675

Conant, R. C. and Ashby, W. R. (1970). Every good regulator of a system must be a model1676

of that system. International Journal of Systems Science 1, 89-97.1677

Conway, J. and Kochen, S. (2006). The free will theorem. Foundations of Physics 36,1678

1441-1473.1679

Craig, A. D. (2010). The sentient self. Brain Structure and Function 214, 563-577.1680

Cummins, R. (1977). Programs in the explanation of behavior. Philosophy of Science 44,1681

269-287.1682

Damasio, A. (1999). The Feeling of What Happens: Body and Emotion in the Making of1683

Consciousness. Orlando, FL: Harcourt.1684

Debruyne, H, Portzky, M., Van den Eynde, F. and Audenaert, K. (2009). Cotards syn-1685

drome: A review. Current Psychiatry Reports 11, 197-202.1686

Dehaene, S., Charles, L., King, J.-R. and Marti, S. (2014). Toward a computational theory1687

of conscious processing. Current Opinion in Neurobiology 25, 76-84.1688

Diestel, R. (2010). Graph theory (4th ed.). Berlin: Springer.1689

Dunbar, R. I. M. (2003). The social brain: Mind, language and society in evolutionary1690

perspective. Annual Review of Anthropology 32, 163-181.1691

Dunbar, R. I. M., and Shultz, S. (2007). Evolution in the social brain. Science 317, 1344-1692

1347.1693

Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. and Txen, J. (2013). Matter-wave1694

interference of particles selected from a molecular library with masses exceeding 10,0001695

amu. Physical Chemistry and Chemical Physics 15, 14696-14700.1696

Faggin, F. (2015). The nature of reality. Atti e Memorie dell’Accademia Galileiana di1697

Scienze, Lettere ed Arti, Volume CXXVII (2014-2015). Padova: Accademia Galileiana di1698

Scienze, Lettere ed Arti.1699

Fields, C. (2002). Why do we talk to ourselves? Journal of Experimental & Theoretical1700

Artificial Intelligence 14, 255-272.1701

Fields, C. (2012). The very same thing: extending the object token concept to incorporate1702

causal constraints on individual identity. Advances in Cognitive Psychology 8, 234-247.1703

50



Fields, C. (2013a). A whole box of Pandoras: Systems, boundaries and free will in quantum1704

theory. Journal of Experimental & Theoretical Artificial Intelligence 25, 291-302.1705

Fields, C. (2013b). How humans solve the frame problem. Journal of Experimental &1706

Theoretical Artificial Intelligence 25, 441-456.1707

Fields, C. (2014). Motion, identity and the bias toward agency. Frontiers in Human1708

Neuroscience 8, Article # 597.1709

Fields, C. (2016). Building the observer into the system: Toward a realistic description of1710

human interaction with the world. Systems 4, Article # 32.1711

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A1712

critical analysis. Cognition 28, 3-71.1713

Ford, K. M. and Pylyshyn, Z. W. (Eds.) (1996). The Robot’s Dilemma Revisited. Norwood,1714

NJ: Ablex.1715

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews1716

Neuroscience 11, 127-138.1717

Friston, K. (2013). Life as we know it. Journal of the Royal Society: Interface 10, 20130475.1718

Friston, K., Thornton, C. and Clark, A. (2012). Free-energy minimization and the dark-1719

room problem. Frontiers in Psychology 3, article # 130.1720

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P, O’Doherty, J. and Pezzulo, G.1721

(2016). Active inference and learning. Neuroscience and Biobehavioral Reviews 68, 862-879.1722

Friston, K., Levin, M., Sengupta, B. and Pezzulo, G. (2015). Knowing ones place: A1723

free-energy approach to pattern regulation. Journal of the Royal Society: Interface 12,1724

20141383.1725

Friston, K., Rigoli, F., Ognibene, D., Mathys, C., FitzGerald, T. and Pezzulo, G. (2015).1726

Active inference and epistemic value. Cognitive Neuroscience 6, 187-214.1727

Fuchs, C. A. and Schack, R. (2013). Quantum-Bayesian coherence. Reviews of Modern1728

Physics 85, 1693-1715.1729

Gao, T., McCarthy, G. and Scholl, B. J. (2010). The wolfpack effect: Perception of animacy1730

irresistibly influences interactive behavior. Psychological Science 21, 1845-1853.1731

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton-1732

Miffin.1733

Geisler, W.S. and Diehl, R.L. (2003). A Bayesian approach to the evolution of perceptual1734

and cognitive systems. Cognitive Science 27, 379-402.1735

Giustina, M., Versteegh, M. A. M., Wengerowsky, S. et al. (2015). A significant-loophole-1736

free test of Bells theorem with entangled photons. Physical Review Letters 115, 250401.1737

Goldberg, R. P. (1974). A survey of virtual machine research. IEEE Computer 7(6), 34-45.1738

51



Gottlieb, J., Oudeyer, P.-Y., Lopes, L. and Baranes, A. (2013). Information-seeking, curios-1739

ity, and attention: Computational and neural mechanisms. Trends in Cognitive Sciences1740

17, 585-593.1741

Graziano, M. S. A. (2014). Speculations of the evolution of awareness. Journal of Cognitive1742

Neuroscience 26, 1300-1304.1743

He, X, Feldman, J. and Singh, M. (2015). Structure from motion without projective con-1744

sistency. Journal of Vision 15, 725.1745

Heavey, C. L. and Hurlburt, R. T. (2008). The phenomena of inner experience. Conscious-1746

ness and Cognition 17, 798-810.1747

Hensen, B., Bernien, H., Drau, A. E. et al. (2015). Loophole-free Bell inequality violation1748

using electron spins separated by 1.3 kilometres. Nature 526, 682-686.1749

Hoffman, D. D. (2016). The interface theory of perception. Current Directions in Psycho-1750

logical Science 25, 157-161.1751

Hoffman, D. D. and Prakash, C. (2014) Objects of consciousness. Frontiers in Psychology1752

5, Article # 577.1753

Hoffman, D. D. and Singh, M. (2012). Computational evolutionary perception. Perception1754

41, 1073-1091.1755

Hoffman, D. D., Singh, M. and Prakash, C. (2015). The interface theory of perception.1756

Psychonomic Bulletin & Review 22, 1480-1506.1757

Hohwy, J. (2016). The self-evidencing brain. Noûs 50, 259-285.1758
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